重金属污染主要来源于电镀、冶炼、化工、造纸、染料等行业。重金属具有毒性和生物不可降解的特点,不仅影响农作物的生产和质量,还会通过食物链逐渐富集在生物体内,严重威胁动物和人类的生命与健康。虽然部分重金属元素是人体必需的微量元素(Cu、Zn等),但过量的重金属在人体内积累会导致多种疾病,严重危害人体健康,如镍过量会使人体产生恶心和咳嗽等症状、高浓度的汞会导致肾脏功能衰竭、镉超标可能会导致人体致癌等。重金属废水的处理已经成为刻不容缓的问题。- c) `/ k! Q: t" G- D
- S7 _) B" b: J; L9 D+ `$ S- x
6 m+ U1 ]7 _; f2 [7 o目前,重金属废水的处理方法主要有吸附、膜分离等物理方法,化学沉淀、电化学等 化学方法,以及结合现代科技的植物修复法等生物方法。对重金属废水的处理,传统的物理、化学方法存在一些固有缺陷,如能耗高、运行成本高、处理不完全、易造成二次污染、产生的大量含重金属污泥后续处理及处置成本高等问题。而植物修复法虽然成本低,不会造成二次污染,但修复周期长,其处理效果受季节影响和自然环境的限制。0 Q5 Y$ X) F3 X2 F
% N7 P% ^% v1 s1 p2 v
电化学法作为一种较为成熟的清洁处理技术,越来越受到研究者的青睐。电化学法主要包括电沉积法、电絮凝法、电吸附法和连续电除盐法等。其优势包括:①对重金属离子的选择性高,处理效果好;②无二次污染,形成的重金属沉淀可回收利用;③工艺成熟,运行设备简单,易于操作,占地面积小;④重金属离子在静电力作用下迁移,而不是随机扩散方式,加速了处理速度,尤其在初始浓度低时更为显著。电沉积法在具备上述优点的同时还具有独特的优势,尤其在金属的提取回收方面,不仅操作简便,而且形成的固体方便收集,经济效益好。本文将从电沉积的原理、传质机理出发,着重分析影响电沉积系统运行的关键因素,介绍电沉积法在重金属废水处理方面的应用等。
3 y! v Q. E4 \9 w& [- M$ h0 \3 N$ \9 B, U: n8 c% c
1 原理及传质机理+ ^6 R. B N) M& p& g
% G9 P8 H% c' L' m) j" ?& H
1.1 电沉积原理4 ]8 R6 U9 ?6 M0 E2 e
5 Y" k: I! B( O: t" ?电沉积是指在水溶液、非水溶液或熔融盐体系中,将电流引入电极时阳极发生氧化反应和阴极发生还原反应的过程。其基本原理见图1,即体系中重金属离子在阴极处被还原成单质形态,并且由于化学反应沉积在阴极表面上[23],从而达到去除和回收的目的。其主要反应是重金属离子在阴极的还原,其反应如式(1)所示。, m( o1 Y- W; f8 E$ l2 M- _
9 F. I1 C6 v, `, W
0 S7 g' F2 P( `# D" K5 F' c: r5 y
) u4 y- z. e+ z3 w8 D. e
, S6 }& n `, `/ f; g9 I
4 B+ B) b# }9 X% `' j+ u4 d3 _7 A
' K" n" Z" }7 V阴极上除了发生金属离子的还原反应,还同时发生其他副反应。这些副反应会影响电沉积的电流效率,降低废水处理效果。Mook等研究证实了电解池内两极均可能发生多种副反应,这些反应的发生会消耗电荷,降低阴极金属的析出效率。其可能发生的副反应见表1。
# |) T' {! |$ N" {6 n
! o3 M! B9 x# M9 k2 ]) B$ }+ q+ R
# F2 @8 ?' S- F3 _& c8 k2 O
( N; r8 E N% S4 p6 Y/ f
0 G0 A. A9 R; {2 k3 X2 V! A3 k副反应不仅通过消耗电荷对电沉积反应产生影响,其产生的副产物也会对电沉积效率及安全性构成威胁。陈熙等认为阳极的氧化反应会产生氧气。溶液中氧气含量升高会腐蚀阴极表面沉积的重金属单质,造成重金属单质返溶的现象,影响重金属的处理效率。重金属单质返溶反应如式(2)所示。1 @, K0 T9 d; y
3 b5 l. ? }; G7 c. }
6 f$ d/ b/ f, P1 _
; Z: k0 L" ~. Q" K4 f1 w8 U; X0 a/ r3 z F& P
1.2 传质机理; U9 n" r) q+ s# w6 k. G3 D
% R/ J- R2 J) k电沉积反应发生于电极表面,其过程由电荷转移和质量转移两部分控制。理论上,在电极反应过程中发生电荷转移的方式包括化学反应、结构重组以及吸附。但在目前的电极反应研究中,重点分析化学反应过程。电荷转移效应可由巴特勒-福尔墨方程进行描述,如式(3)所示。该公式可以描述电极处电流密度与电极电势的关系。
( s' H- f* Q8 ?; y
; `# `7 p$ t3 F& v; _; q
( p, V7 W' \% K' c9 |% U4 V* j" W- _( K; f" H9 v; F
9 h9 `) ] P1 }0 A& m式中,i(t)为电流密度,A/㎡;i0(t)为交换电流密度,A/㎡;E为电极电势,V;E0为平衡电位,V;T为反应器温度,K;α为电荷转移系数;F为法拉第常数,F=96485C/mol;R为通用气体常数,R=8.314J/(mol·K)。2 h5 ]) Y+ o* X
6 M* f* o9 a$ c, z9 x( p, R
该模型可用于表述电沉积法对重金属的去除及回收。Low等通过对巴特勒-福尔墨公式进行推导,证明了应用电沉积法处理偏酸性含Cu2+废水时,废液中氯离子浓度对Cu2+沉积产生的影响。/ {( m) c% R* ]2 K) S2 M
: n: m* q( _0 c- y5 l
重金属废水中活性物质向电极的传质过程由扩散、迁移和对流等三个主要过程控制。以电解槽一维模型为例,沿水平方向传质过程可由Nernst-Planck方程来表述,如式(4)所示。
" k7 F) H1 a' I% K. c5 p; x# M: y0 O1 l* {
0 c/ F1 B) H4 B0 g2 a) J& Z
* b7 |# ?* s/ N9 s' r v1 e ?, F7 C% D- Z
式中,J(x)为距电极表面距离x处电解质摩尔通量密度,mol/(s·c㎡);D为扩散系数,c㎡)/s;C为电解液浓度,mol/cm³;∂C(x)/∂x为浓度梯度;∂ϕ(x)/∂x为电位梯度;z为电荷量;V(x)为电解液循环流速,cm/s。公式右边三项分别代表扩散、迁移、对流对传质总通量的贡献。
. t' r @- @( Y) K( Y5 h3 ^
6 Q# c8 l. v, G- e k扩散主要是由于电极附近区域与电解液之间存在金属浓度梯度所引起。重金属离子在电解液中的迁移是在化学势的影响下发生的。迁移过程可由带电金属离子在电场影响下的运动来描述。虽然随着重金属离子在阴极处发生沉积会导致电极周围电荷的不平衡,但已有研究通过向系统中加入大量的电解质以补偿这部分电荷的不平衡,所以对其进行传质分析时也可忽略迁移效果的影响。如Almazan-Ruiz等研究圆筒电极对Cu2+的回收时,在湍流模式下,忽略迁移效果的影响,预测电镀废水中Cu2+回收率(误差小于8%)为恒定电流下的80%。Rivero等利用Nernst-Planck方程设计了旋转圆筒电极反应器在湍流模式下Cu2+回收的传质模型。
( _ t) R9 w* j
% C5 x8 M/ t- e& L# D1.3 动力学模型6 E* {# e1 Z. A
3 b; ?$ ?! h& m在不依靠第一性原理的基础上,一种模拟电沉积过程的可行方法就是利用金属之间的相互势,运用分子动力学方法进行模拟。但分子动力学方法在模拟过程中明确考虑了热波动的影响,这对计算提出了更高的要求,需要的计算时间也更长,即使运行数天,模拟结果也只能解析纳秒级别的过程。对于电沉积这种时间尺度较长的过程,效果并不理想。蒙特卡罗动力学方法在一定程度上克服了分子动力学方法的弊端,它可以在较长的时间尺度上进行模拟且计算量更低[31]。嵌入原子法能够准确地表征金属与金属之间的相互作用[32],在金属体系中得到广泛的应用。它在金属的自扩散[33]和外延生长[34]等方面的应用给电沉积过程模拟提供了可靠的依据。
+ k! _6 }* t, T, M( n, q- C9 ?; k, B, P
1.3.1 蒙特卡罗动力学! r; ?# W( b2 [8 s
4 h2 t' h" W; n6 ?2 u4 q
分子动力学中,对于某个金属体系,假定原子在某一时间段内在准平衡位置振动。因为这些准平衡位置都对应于系统势能中的最小值,所以一个原子在移动的过程中,必须克服一个势垒,才能从一个最小势能处移动到另一个最小势能处。鉴于这个理论,将分子动力学或量子力学密度泛函数等方法作为蒙特卡罗模拟的输入,这是进行蒙特卡罗模拟金属沉积过程的基础。在运用蒙特卡罗动力学方法时,需要使用一个近似粗粒度模型,它假定域是通过一组独立的动态机制来演化,而这些动态机制又被假定为泊松过程。在这些近似条件下,进一步求解电沉积过程方程,其状态概率密度详见式(5)和式(6)。$ R2 F3 r% H6 {+ w: C+ k# F/ F3 [
* T) i, I! z$ o
3 b! ^7 U) J' t5 ~
5 J6 `9 v6 L9 k+ e+ C
3 u8 [! c: d' k+ @4 E0 Y$ E# l
6 v1 q/ j! e" D0 }% {2 J! g( F" R c8 x, H# {; V# L7 h( p4 d/ p
1.3.2 嵌入原子法/ U. w0 D( U( K
( N7 ]1 I) u) C; I嵌入原子法表征势能是基于密度泛函理论的半经验式。半经验式可以描述系统中金属键的相互作用,准确估算原子的势能。原子势能包括多原子之间的相互作用及两个原子间的相互作用[32],其关系式详见式(7)和式(8)。% S& h3 W" N6 Q' Z) }
4 F2 C8 P( G/ o5 S R" s- ~0 Q5 M( I m
$ ?' W; u* Y" v8 V$ @" y% V1 e4 d
1 A( Y! j) U# E' y6 k: M1 j2 Q4 o. N2 l1 L& L
式中,rij表示原子i和j之间的距离;Ei为原子间相互作用能;F为多体嵌入能函数;ϕij(rij)表示原子i与j之间的排斥能;ρi为原子i的总电子密度;ρh为量化邻近电子密度的函数。 X( {9 I2 E! F9 |% u
; |) Z( N" k- i8 A3 Y3 W1 J6 S
Tanyakarn等[30]运用嵌入原子法确定电沉积过程的蒙特卡罗动力学模型。模拟过程是在不同的初始条件下,一定数量(2.5×104)的铜原子的沉积过程。模拟发现,沉积发生之后原子主要通过3种机制在电极表面进行扩散,包括跳跃机制、原子交换机制、阶跃边缘原子交换机制,详见图2。这3种表面扩散机制的共同作用,导致沉积表面粗糙度、团簇周长及团簇面积的变化。其中,阶跃边缘原子交换在沉积过程中比较活跃,而跳跃和原子交换机制则在电沉积停止之后继续发挥作用。该方法能够在较长的时间尺度及较小实验器尺寸情况下准确地描述电沉积过程。
) f L' z; {1 \0 j& N, ?8 X/ p1 ]- z( L4 i! X
9 J8 A8 B+ L1 o5 _. c3 |$ [4 w
7 \: Y9 \$ s9 s: J0 _' G(A)跳跃机制;(B)原子交换机制;(C)阶跃边缘原子交换机制(红色球代表扩散原子的初始位置,黄色球代表原子扩散后的新位置,蓝色球代表原子已占据位置)
6 C2 k" E. |- z& o5 W# `$ m- `: I
1 b; u7 t* m( C3 O2 电沉积过程影响因素
$ o7 Z" Q7 P! ?- o3 I; H/ y2 q" ?& b& X
/ x# W) ^( C/ O) d0 m% A J
电沉积处理重金属废水过程中的影响因素主要包括反应器结构类型、电极材料性能及操作参数等。这些因素不仅影响重金属离子去除率,而且影响电沉积能耗。
3 S) V% Y$ c5 }
% C* F& ` G, f* }2.1 反应器结构及电极材料影响
; t8 A [( x. h: }9 e1 U. B- @9 m( O' p
2.1.1 反应器类型
Z: v8 |8 m- F/ V0 E$ K2 I) @( C5 m7 s" M d% b+ X" u C
反应器的设计是电沉积技术的核心。电沉积反应器主要构造包括阴极、阳极和电解质。根据电极排列方式的不同,反应器可分为二维反应器(2D,如平行板反应器等)和三维反应器(3D,如流化床反应器、填充床反应器和喷动床反应器等)。3D反应器是在2D反应器的基础上,通过向电极间添加粒状或碎屑状的电极材料构成。与相同体积和几何面积的2D反应器相比,3D反应器有着更大的比表面积和更高的传质速率,在去除率及降低能耗方面具有较大优势。' K+ ?& s3 j. d! f- `3 n
- e. ]$ ^% I T+ P, h
Su等采用大表面积圆柱体阴极,开发了一种从硫酸溶液中同时回收Cu和Se的工艺,Cu和Se的回收率分别达到93.2%和97.6%,且沉积的纳米粉末很容易用水冲洗便能收集。Martins等使用三维石墨电极去除稀溶液中的铜离子和锌离子,Cu2+和Zn2+的去除率分别达到99.9%和99.5%,电流效率分别达到68%和65%。陈熙等用电沉积法喷动床反应器处理铜镍混合废水,在鼓入氮气的条件下,沉积480min,铜镍离子的去除率分别达到99.8%和85.2%。Chellammal等[36]研究了不同反应器类型处理含铜废水的能耗情况,发现2D电极对铜的回收率为98.2%,能耗为19kW·h/kg,而在相同电流密度下3D电极对铜的回收率达到99.5%,能耗为4.064kW·h/kg,仅为2D电极能耗的21.4%。
. {& {7 F. V" N: f& e
$ D0 `1 E% h5 }3 Q2.1.2 电极间距的影响$ A0 P+ @- h9 ]5 K( D4 F3 k3 [) l% M
0 B4 T/ ~2 z7 v8 H
电极间距对重金属电解效果的影响主要体现在重金属离子传质速率及电解槽内重金属离子停留时间两方面。在电极数量和面积不变的情况下,减小电极间距,会使电解槽容积减小,当循环液流量不变时,电解液流速加快,可促进离子的对流与扩散,强化重金属离子传质,有助于提高电沉积速率,降低能耗。不过,电解槽容积减小会缩短反应物在槽内的停留时间,过小则将导致重金属离子反应不充分。以往研究中根据不同废水特性,大多将极板的适宜间距控制在20~50mm。这一范围内既有利于金属离子的对流扩散,又不会由于溶液停留时间过短而降低电沉积效率。陈熙等[39]以石墨-铝板为电极电解含铜溶液,发现随极板间距增大,铜离子的去除率逐渐降低,但极板间距不能过小,否则容易造成系统短路的现象。郭岚峰采用电沉积法处理锰离子过程中发现,极板间距为30mm时电流效率最高(73.1%),单位能耗最低(6265kW·h/t),随着极板间距增大,电流效率逐渐降低,能耗增加。因此,在不影响正常电沉积操作的前提下,应适当降低极板间距,以节约能耗。
* H% z& V' _3 A8 {
$ j, c* s( |- z& o; w$ l2.1.3 电极材料的影响+ B F' T1 `. K# W5 v7 q3 |9 d2 S6 L
) k/ I* l) x! L. Q; m% Q电沉积系统的阴极由导电材料制成,如金属铜、铝、碳质材料(如石墨)、不锈钢、金属氧化物等。阳极选用不溶性材料,如不锈钢、石墨等。电沉积反应在阴极主要经历两个过程,一是目标金属离子在阴极放电,结晶形成沉积物;二是氢离子放电,形成氢气。过多的氢离子参与反应会使系统的电流效率下降。因此,必须控制氢的还原电位低于金属的还原电位。在水溶液为电解质的条件下,还原电位较正的金属(如Cu2+)的析出很容易,但还原电位较负的金属(如Zn2+)就会比较困难,此时阴极宜选择氢过电位较高的材料,如不锈钢板、铝板等[41]。研究表明,不同的电极基底材料会影响电沉积速率、电化学行为及膜修饰电极在电解质溶液中的稳定性[42]。采用纳米技术对电极材料进行修饰,可显著改善电极的电沉积性能,如Liu等[43]采用涂有单层碳纳米管的不锈钢电极作为阴极去除水溶液中的铅,在最适反应条件下,铅的去除率可达97.2%~99.6%,且该电极材料易于再生,对废水中铅、铁、铝等均具有较好的去除效果。
* r& R' n6 v2 F8 U8 F' L8 c
- M, S# h' ^- \1 j2 j/ ]0 s& I碳材料作为一种来源广泛、物理化学性能优越的导电材料,其作为电沉积电极材料具有天然的优势。石墨、活性炭等具有较大的比表面积和较强的导电性能,廉价易得,是最传统的电极碳材料。新型碳材料,如石墨烯、碳气凝胶、碳纳米管等,较石墨和活性炭具有更高电导率、更大的比表面积,且表面大量的活性基团更加利于修饰,具有很高的应用开发价值。Verduzco等[50]利用石墨烯复合材料作为电极处理含As和Cr的自来水,处理24h后,原水中的As和Cr去除率分别达到87%和98%。Liu等[51]合成一种不锈钢网包覆单壁碳纳米管(SWCNTs@SSN)的新型电极材料,在pH=10、电压为2.5V的条件下处理浓度为10g/dm3的含镍废水,发现镍以氢氧化镍的形式沉积于电极表面,其最大去除率可达到95.1%。
4 Q+ M& b/ { P) C% m( Y
0 K) H, R6 Y+ I b" e, s3 S除了影响电沉积效果,电极材料对能耗也有显著影响。研究发现,具有催化性能或氧过电位较高的阳极材料,可以通过减少析氧反应的发生,降低系统的能耗,提高处理效率。Raghu等分别以石墨、RuO2/Ti和SnO2/Ti作为阳极,通过电沉积处理含铜废水,发现氧过电位较低的石墨电极能耗(15.3kW·h/kg)显著高于其他两种电极(RuO2/Ti,9.2kW·h/kg。SnO2/Ti,8.3kW·h/kg)。
3 ?/ n# y! l/ G# f* @2 K8 E2 y9 ^( g! C# i1 C+ ^
2.2 操作参数的影响1 L1 i s/ I9 ^
) T! Z) x3 a0 Q% Z$ O& t7 c* p
影响电沉积过程的操作参数主要包括电压、电流密度、金属离子浓度、溶液pH、温度,以及电解质种类、电流形式、电解时间等。研究表明,主要操作参数影响程度的顺序为:电压>重金属离子浓度>溶液pH>温度。
" [; W3 o! N* O( L; Z( [& a+ E+ n$ a$ @( H/ S, }) H
2.2.1 电压
% i" I% |0 v U
& _0 w5 s3 z5 ]& J电沉积过程中,电极一般经过3个反应阶段,分别为电极反应控制阶段、扩散控制阶段和副反应阶段。反应刚开始时,随着电压升高,重金属离子的运动速率加快,沉积速率增大。随着反应进一步发生,电极板处产生浓差极化现象,电极附近金属离子浓度小于溶液本体的离子浓度,导致重金属离子扩散速率变慢。当电压进一步升高,阳极开始析出大量H+,在抵消浓差极化作用的情况下,依旧会增加阴极氢气生成,使溶液pH升高,金属离子会以氢氧化物沉淀形式析出,从而降低回收的效率,而且较高的电压也增加了能耗[55]。所以,选择电沉积电压时,除了考虑电沉积效率,还需同时考虑重金属和氢析出的相对电位及能耗情况。( x, c8 o! d1 z/ n" K
) t! d/ l5 M1 t. ]( i- l7 y需要注意的是,对于含多种重金属离子的废水,适当的工作电位是提高贵重金属回收选择性,提高金属纯度的关键。目标重金属与其他杂质金属的析出电势必须相差足够的数值,一般至少要差0.2V以上,否则会有杂质金属析出[56]。Bhatluri等研究发现,铅在阴极沉积的最佳电压是2.5V,沉积率为88%,继续升高电压时,铅的沉积率没有进一步增加,反而增加了系统的能耗。% Z4 ]% n+ \' l, R L% \
4 O+ k8 H' q% N& J- Y0 h2 K; a2.2.2 电流密度
1 t% X Z+ B7 ]( I7 ^7 R" h: I: {9 ?6 X7 \8 T4 v4 r. s6 q; C* H! i
电流密度对电沉积重金属的影响主要体现在金属沉积层成核与生长方式、电沉积速率等两个方面。适当的电流密度可使电极表面形成形核细致、均匀的沉积层,回收的重金属晶体形态较好,具有较高的价值。而过低或过高的电流密度会对重金属结晶形态产生影响,如电流密度过低,电沉积速率会明显放缓,结晶速度减慢,晶体过大;电流密度过大虽然能加快金属离子的沉积速率,但会导致溶液中金属离子的迁移速率明显小于电极表面沉积速率,阴极附近放电的阳离子数目减少,电极表面会形成蓬松状的沉积层,减少金属沉积点位[58]。电极表面金属沉积层晶粒大小与电流密度变化关系如图3所示。Hamlaoui等[59]研究了电流密度对阴极沉积铈氧化物的影响,发现在低电流密度条件下,沉积物呈团簇状,而在较高的电流密度(>1mA/c㎡)下没有团簇产生,形成的晶粒尺寸小。这说明随着电流密度的变化,金属沉积的结构也会发生相应变化。过高的电流密度会影响重金属沉积效果,这主要是由于较慢的离子迁移速率所引起,但可通过同时提高电流密度和离子迁移速率来提高沉积速率。Ning等设计了独特的废液通路,将阳极作为喷管,使废液以3m/s的速度喷射到阴极表面,同时将电流密度提高到120mA/c㎡。这种方式下沉积的铜呈块状,可直接回收,且回收率为传统模式的20倍。
; ?) U. o% \! w/ W% [0 }- n+ k/ s% {7 j& y$ ~- _8 g: e
" g3 T6 k0 \! b T/ ]$ W% P
5 o, Z. E2 P f% m9 {: s
& P6 O# K' n) L3 F1 X( N2.2.3 溶液pH* _/ _) L1 X$ G
. ? D4 w$ Q. p
电解液的pH能够影响电极副反应及目标重金属的最终析出形态。电解液酸性较强时,H+浓度高,氢传质速率快,由浓差极化造成的析氢过电位低。根据Nernst方程,H+浓度高,氢电极反应速率快。同时,活化极化同样造成析氢过电位降低。在两者的共同作用下,氢实际析出能力增强,与目标重金属竞争电子,从而降低了电解金属的电流效率和回收效率。当pH>7时,电解液呈碱性,金属离子易形成氢氧化物沉淀,无法电解。电解液呈中性时,由于氢的析出,阴极附近OH-浓度升高,金属离子在阴极附近发生水解甚至生成沉淀。因此根据不同金属离子的平衡电位不同,存在电解最佳pH值。许文杰等运用电沉积法处理含镉废水过程中发现,当pH<1.5时,由于溶液中氢离子浓度较高,氢浓差极化造成析出过电位低,氢的析出竞争能力提高,导致阴极析氢反应剧烈,阻碍镉离子的沉积;而pH>3.5时,虽然氢离子浓度降低,在浓差极化和活化极化的共同作用下,氢析出的相对竞争性减弱。但镉水解程度加大,二者共同影响下,使镉沉积的电流效率和回收率均有所减小,所以当电解液初始pH为1.5~3.5时,处理效果最好,镉的去除率高达99.3%。
7 Y0 o" E8 p$ i( ~! i
1 T2 Q0 D" Q# j" z! g |
© 声明:本文仅表作者或发布者个人观点,与环保之家[2TECH.CN]无关。其原创性及陈述文字、内容、数据及图片均未经证实,对本文及其全部或部分内容、图片、文字的真实性、完整性、及时性本站不作任何保证或承诺,仅做参考并自行核实。如有侵权,请联系我们处理,在此深表歉意。
|