速查3:曝气池出水水温是否<10℃。
. O% e4 V9 y, P; V. m) n6 q4 V( ~* i: d3 c; |4 u5 C
如果曝气池出水氨氮浓度>5mg/ L,说明曝气池内的微生物的生存环境条件,限制了硝化菌对污水中的氨氮转化为硝酸根。其中有一项,特别是北方地区的冬季需要重点考察的就是曝气池中的水温。水温是直接影响将氨转化为硝酸盐的硝化菌的生长速率的因素,当曝气池水温降至10℃以下时,硝化细菌的繁殖速度可能不足以维持足够的数量,无法将进入到曝气池内的污水中的的氨氮全部转化为硝酸盐。
1 D3 ~3 t6 R" }9 z5 i
Y) e' n( k9 h* r* X在曝气池中,活性污泥中的细菌将污水中的有机物转化为曝气池中的新细菌细胞体的过程中,产生热量,这部分热量被传递到曝气池环境中,当进水中的有机物充足,活性污泥浓度足够,可以使水温通常保持在10℃以上,这也是为什么北方冬季的污水厂需要保持高浓度运行的原因之一。# _" O" d( V5 I! A
* b9 y0 b# U h* l" ]
但是很多污水厂存在进水量不足,有机负荷低,活性污泥的污泥浓度底,则细菌在繁殖过程中产生的热量较少,不足以提升曝气池的温度到10℃以上。另外,如果冬季污水厂的曝气量过大,超过进水中有机负荷所需的曝气量,这些过量的曝气生成气泡会把曝气池中的热释放较冷的环境空气中,从而导致热量损失。因此在低有机负荷系统,也就是进水量不足,进水浓度过低的过度曝气会导致曝气池水温降至10℃以下。
$ M; i2 Y; v/ u
7 k$ r8 h: D" g* V2 A K1 Y/ m测量曝气池出水中的水温应结合测量曝气池的溶解氧一起进行,很多型号的便携式溶氧仪上都自带有温度显示,; X( \, N: B# e; N$ T
6 }( z1 Z- m, A9 b
比如溶解氧测量仪测量超过2mg / L的溶解氧(DO)和9.9℃的水温。在这种情况下,应减少曝气风机的曝气量,防止过量的曝气造成的热量损失,同时节省电费。一般来说,在曝气池出口检测的DO浓度为2 mg / L的情况下,就表明了曝气池内的溶解氧已经完全满足微生物对有机物转化降解能力的需求。因此在冬季,如果存在曝气过度降低水温,可以通过减少曝气运行时间来提升水温。
3 {4 e$ O4 c& q4 M
( O/ Q" Q3 I7 d8 x速查4:二沉池内污泥分解* X S! A5 i; m, W# |1 _6 z
; K8 \, d5 H7 r
活性污泥在二沉池中长时间停留会出现的活性污泥的分解现象,这种情况会造成氨氮的再释放。活性污泥中细菌的细胞由碳和氮和磷组成的,当活性污泥沉淀到二沉池底部,底部活性污泥中的好氧细菌在长时间没有氧气的环境中时,活性污泥中的厌氧细菌就会繁殖分解。当细菌分解时,它们将活性污泥的微生物体内的氨氮重新释放回二沉池的水中。如果测量二沉池出水中的氨氮含量高于曝气池出水,则二沉池中的活性污泥可能存在分解现象。而厌氧环境通常会造成活性污泥变成黑色;因此,要检查二沉池表面是否有黑色块状污泥上浮,以及二沉池底部污泥层中是否存在腐化污泥。8 l# o( o$ _* q$ k5 @
( B- n+ h' x8 H关于二沉池内氨氮超标的情况可能的原因有:; _1 M+ G* b; P+ }9 o
: o7 d) o& k, o; ?来源1:二沉池普遍装有浮渣挡板,在曝气池产生的生物泡沫进入到二沉池后,这些生物泡沫会随着水流扩散,积聚在二沉池浮渣挡板后面。当浮渣挡板泡沫聚集时间长后,这些生物泡沫就可能开始厌氧分解,并从分解中的细菌细胞中释放氨氮。由于二沉池本身的功能是泥水分离,而不是为去除氨氮而设计的,因此这部分释放的氨氮通过二沉池的上清液进入后续的流程。解决方案:清洁浮渣挡板区域内堆积的生物泡沫。
2 O/ \8 W( }& o; t+ v( L3 p! G/ r- P: a$ B B1 X
来源2:如果曝气池中的生物泡沫产生过多,生物泡沫最终覆盖整个二沉池表面。这些生物泡沫往往呈棕色,并且通常与曝气池中的活性污泥浓度和进水有机负荷(低F / M比)相关,二沉池大量出现生物泡沫堆积在表面时,就需要解决生物池内的问题了。8 n4 ^& f, R H( x+ x
7 w. ^$ }; M: M& H来源3:二沉池内随着污泥层深度的增加,污泥在二沉池中的停留时间会加长,活性污泥中的微生物更有可能分解并释放微生物体内氨氮。由于氨氮是可溶的,它将释放到二沉池水中并通过二沉池的溢流堰板流入到后续构筑物内。因此过长的污泥沉淀时间,导致二沉池底部的污泥层中出现深色或黑色的层面,是活性污泥中的氨释放的视觉标志。
5 P- k2 b9 q0 T" M ]0 L( C/ A. J8 b& G+ X* X
3 Y3 }0 H7 I( ^
速查5:总碱度<100 mg / L。
- n2 o6 I4 X: A v' o* W* I/ O7 w' y2 b
如果曝气池出水的氨氮浓度>5mg / L,则曝气池中还有可能存在限制进水完全转化的条件,使硝化菌无法正常进行硝化反应。曝气池内的硝化细菌在好氧条件下将污水厂进水中的氨氮(NH3-N)转化为曝气池中的硝酸盐氮(NO3-N)。在硝化菌将氨氮转化为硝酸盐的过程中,硝化细菌也会产生酸。如果在硝化反应中生成的酸积累的足够多,会把曝气池的pH将降低,如果降到很低以后,大量的酸会最终抑制硝化过程,导致硝化反应停止,造成曝气池出水氨氮超标。
' I8 g1 a9 T. b5 N( ~" H9 d' |! t* w" y {, k
由于生活污水厂的进水中一般都在6~8之间,并且会偏在碱性范围内,保持在7.5左右,这部分的PH值可作为硝化细菌在硝化过程中产生酸的缓冲剂。如果进水中有足够的碱度,曝气池内的pH值会保持在硝化细菌的反应向右进行的所需范围内,并完成转化。但是在运行中,如果有工业偷排的废水进入到污水厂内,这部分废水的氨氮浓度远远高于生活污水,或流入的废水的本身的PH值就很低,这两种情况都可能导致曝气池内的pH降低并抑制硝化过程,造成曝气池出水氨氮超标。( e3 t; i% `$ l
$ d/ Q" e5 M& l/ s1 a测量曝气池出水中的总碱度可以使用各种快速的检测仪,或者通过实验室做法来进行。一般情况下,当曝气池的总碱度> 100 mg / L时,氨氮的硝化过程不会受到曝气池内的碱度限制,这种情况下,我们要继续根据流程图的指向去分析氨氮超标的其他可能原因。如果曝气池总碱度<100 mg / L,就说明碱度是可能的主要限制因素。5 ^/ Z2 W/ q+ A: Q, ^9 B3 W
c. I8 @8 P/ O6 q* y! g# G0 D( h当然对碱度的监测仅仅一次或每天同一时间测量,这种监测方式并不能准确的说明曝气池内的碱度变化,为了得出总碱度的真实变化曲线,需要在厂内进行一周中不同日子和一天内不同时间的总碱度测量。监测总碱度(注意这里是总碱度,而不是我们日常化验室所做的pH值)对于预防氨氮出水超薄情况至关重要。因为当硝化过程中消耗碱度时,曝气池内pH将迅速下降,但是一旦检测到PH下降,说明硝化产生的酸已经富集,硝化反应已经停止,因此在氨氮的硝化反应中,检测总碱度的意义大于检测PH值。, v; }6 W! B9 e* @
a: `: n4 R. ?速查6:曝气池的热量损失。& H- O% P. S' v; ~% M# X. |0 O
$ ~- V( ^- J1 O- G6 _减少曝气池的热量损失为了防止曝气池水温过低导致硝化反应受到抑制,从前面的分析中,可以知道生物池内的过量的曝气容易导致冬季水温的损失,因此曝气池内的曝气量与所接收的有机负荷应当相互匹配,北方地区的中小型污水厂还会受到季节性流量变化影响,在冬季可能会出现明显的进水水量的下降。
" _1 T. j! L! {
- E# l: |# R0 V& ~如果冬季的进水量严重减少,工艺的调整是利用系统设计的双线运行的灵活性,将单条曝气池从工艺线路中超越掉,以满足曝气量和有机负荷的匹配。注意不要添加有机碳源以增加有机负荷来维持所有的曝气池的投用,因为我们花钱购买了有机碳源来喂养活性污泥中的细菌,然后再花钱(曝气风机的电费,污泥脱水的药剂费,电费)将其从污水中去除,这种方式毫无经济性。
/ O4 _$ P/ d- I% S! a; r6 i' u0 \2 F" d# B K& D7 K
减少热量损失的措施1:要精确的统计计算冬季低温下运行的有机负荷,并根据实际的运行负荷,合理的调控曝气风机的开启,满足曝气量和有机负荷匹配。过量的曝气将会造成曝气池内活性污泥和较冷的环境空气加大接触,造成温度交换致使水温下降。同时也会浪费更多的电力,因此在冬季水量减少导致有机负荷下降的情况下,要减少曝气时间周期以防止过度曝气。
8 y% G+ D5 C9 V( _0 P' T/ ` s! p
" V/ r# B' d+ z6 g4 ~减少热量损失的措施2:加盖。当较冷的环境空气与较温暖的曝气池内活性污泥表面接触时,来自曝气池内混合液的热量会流失到大气中。这种可以用防水布或其他类型的保温隔热材料覆盖在曝气池表面,防止这部分的热量流失。在极端寒冷的情况下,是要建设整体的厂房来保持构筑物的冬季防冻问题。
. |3 K5 }2 J& R/ S$ G1 ?' J' k/ ]& b! G. @' z3 N% m
速查7:曝气池出水溶解氧DO<2 mg / L
R* Y- d) g) ]
. N+ T8 I+ x0 E+ _" r m如果曝气池出水氨氮浓度>5mg / L,前面的几项都满足的情况下,就要检查曝气池出口的溶解氧含量。硝化反应中,硝化细菌在整个曝气池将氨氮转化为硝酸盐的反应需要足够的DO。如果DO不足,则硝化过程就会受到抑制,曝气池出水氨氮可能>5mg / L。这个是需要在曝气池现场监测整个曝气池中的DO浓度,以确定是否是因为溶解氧DO不足导致硝化反应不完全的原因。曝气池内的DO浓度与进水的有机负荷,也就是进水的COD/BOD浓度密切相关。因此,如果要了解每天曝气池内实际的DO浓度的变化,需要在白天的不同时间,以及在一周内选择不同日期进行监测,通过多组的检测数据来判断和绘制每天的各个时段的溶解氧变化的情况。
) o' T, e3 @3 C6 E1 D, Z, T# u1 F6 B" G
曝气池上的在线DO仪可以帮助运行人员在较长时间内对曝气池环境中的DO浓度进行趋势分析,但是要注意保持DO探头的定期清洁和数据的校核。如果现场DO仪表没有设置或者数据不准确,就需要运行人员使用手持的便携式溶氧仪进行全天和一个星期内的定期进行测量曝气池出口处的溶解氧,根据这些数据来绘制DO曲线。测量曝气池内不同深度和位置的DO浓度可反映出曝气池内氧化条件的最佳总体情况。在实际的日常记录中,测量DO浓度的最关键位置是曝气池出水,这也是曝气池的DO值最高的位置。& k- ~. O6 V* u; J: J, L- v, \
) w9 g" |+ t, ]9 s8 r溶解氧<2mg/L的解决方案:增加曝气池的溶解氧浓度。在工艺调整中,增加鼓风机运行台数或者增加运行频率(变频),调整部分关闭的阀门的开启度,或者可能需要清洁曝气池底部的曝气装置(这个要根据实际的风压的变化来进行判断)。如果现场设备都已经不能满足的情况下,可以使用外部的附加的曝气设备以在必要时增加曝气能力,但是这种情况下就要及时考虑生物池的升级扩容工作了。! }& v- ^+ n3 O+ r- K
% I* n# A5 r4 k9 A1 b2 X( u. `8 ~- r* _' D, {+ G- v
速查8:增加曝气池总碱度
. g) e7 a2 h, i! g; s# m* X7 ?0 |
( N$ d6 b6 g0 n4 V1 @将曝气池中的碱度提高到>100 mg / L。当测量曝气池出水的总碱度<100mg/L时,需要进行曝气池碱度的补充,一般可以采用投加片碱(氢氧化钠)等方式提高碱度。一般来说,硝化细菌将每毫克/升氨氮转化为硝酸盐的过程中需要7倍以上的碱度来平衡产生的酸。因此,在高浓度氨氮进水的情况下,曝气池内的碱度浓度变化的速度很快,并且需要立即进行调整。
( ` W# N( Z( F# b, {+ V; `% k- s8 @. n: Y r0 h, J+ E
使用一些化验方式可以快速的测定现场的总碱度。当总碱度降至<100 mg / L时,也就是进水中的碱性物质即将被硝化细菌产生的酸消耗完,这个时候,曝气池内的pH值会迅速从从碱性转为酸性,从大于7转为小于7。因此监测总碱度,并根据检测数值有效的补充碱度来保证硝化菌的正常反应,是氨氮超标检测中的重要的一个部分,而且检测碱度可以在氨氮超标之前,改善曝气池的硝化环境,从而预防出水氨氮的超标。) W" _# }2 x2 a& [1 O7 ~
/ @! r2 W; c3 \: z
% D' h6 P7 p. Q1 |
速查9:曝内气池混合液:离心机旋转后固体物质<2%。
& Q, u% s/ P& N y1 C. e. B4 b
1 P7 i! w1 X* n( Z# M! ^ s) e$ e& T如果曝气池出水氨氮浓度>5mg / L,则曝气池中存在着限制进水中的有机物被活性污泥中的微生物完全转化进入细菌细胞体内的条件。污水厂的污水的cBOD和氨氮是曝气池中活性污泥细菌细胞(生物质)的“食物”。因此在污水流出曝气池之前,活性污泥中的细菌必须将所有污水中的这些物质消耗或转化为新的细菌或无害的副产物。而当进水量增加时,曝气池中活性污泥中的生物量(细菌种群)就必须保证污水在曝气池停留时间段内,把氨氮完全硝化成为硝酸盐。" d8 E: K% I9 t2 q
& I, Y8 b& T% ?. x! E
如何检测是否有足够的微生物的量呢?通过MLVSS可以检测,在实验室中也可以简单用离心机来估算曝气池中的生物量。由于活性污泥中的絮凝体由丝状菌形成骨架,并组织起来,在离心机的离心作用下,会将活性污泥絮凝体中的水分离心出去,最终剩下无机物和脱离水分的微生物,因此通过离心可以粗略的判断活性污泥中的生物量的多少。# g: k% v! w& Y
$ e& f3 [$ a0 | X4 w9 i g" t
在污水厂的日常运行管理中了解生物量的相对浓度及其变化趋势(增加/减少)比了解生物量的确切数量更为重要。因此在日常我们使用离心机可以在15分钟内确定生物质浓度的粗略数值,并且对于在日常的过程控制来说这个数据已经足够了。通过离心检测出的曝气池中生物质浓度的增加,表明曝气池可以处理进水更多的有机负荷CBOD或者氨氮。然而,当生物质浓度(由离心机确定)增加至4%以上时,过多的活性污泥中的微生物就会出现可以抑制或减慢的活性污泥的沉降速率。当发生这种情况时,二沉池内的污泥层就可能开始上升。如果没有及时进行调整,则污泥层可以上升到二沉池池的出水堰的位置,最终随着出水排出,并因此进入后续的处理构筑物,导致出水水质超标。+ |4 o* O* X; ]
7 ^3 J! s! g" N3 X; M% C
解决方案:如果曝气池中的氨氮浓度>5 mg / L,且通过离心机检测的固体物质<2%,表明曝气池内的活性污泥中的生物量的浓度太低,则增加曝气池中的生物量浓度,工艺调整剩余污泥排放率来提高活性污泥的生物量。典型的曝气池混合液离心后的固体体积范围为2%至4%的范围内(各个污水厂可根据实际的进水中的SS含量进行数据积累确定这个范围值)。判断活性污泥中的生物量的浓度的趋势在过程控制决策中是非常有用的一个参数。在日常化验中,长期检测曝气池中的混合液的离心后固体含量,对于快速识别曝气池中的生物量的多少非常有用。
3 y$ Q" V9 ~& y- p. x4 T3 p! T4 L, Y9 V3 J5 [1 y" h
|