氨氧化细菌(AOB)和氨氧化古菌(AOA)在氮循环过程中扮演着重要角色,二者均可将氨(NH3)氧化为亚硝酸盐(NO2-)。羟胺是AOB氨氧化过程的重要中间产物,以欧洲亚硝化细菌(Nitrosomonas europaea)为例(图1),NH3被氨单加氧酶(AMO)氧化成羟胺,接着被羟胺氧化还原酶(HAO)氧化为亚硝酸盐。AOA的氨氧化底物和产物与AOB过程相同,但是AOA的基因组中没有编码HAO的基因,那么羟胺是否也是AOA氨氧化的中间物呢? L6 v: Q; K; f; V
2 T' U, G5 [$ k, B/ Y0 p- B
" k9 T0 T6 g& S$ f$ k7 ^# ~
4 r1 ], Q& f1 ^$ o5 r
& M& A, |( j" j6 K4 w& {图1 AMO: 氨单加氧酶;heme: 血红素;HAO: 羟胺氧化还原酶。
# v, i; S+ @, R9 |8 O# W0 t3 j: ]6 A# y
由于羟胺不稳定,需要可靠的实验来证明这个假设。如果羟胺是AOA氨氧化的中间产物,则AOA一定可以氧化羟胺,那么给AOA培养基中加入羟胺之后,一定是有亚硝酸盐产生的。据此,Neeraja Vajrala等人做出如下对照实验:通过控制其它培养条件,在不同组的AOA培养基里分别加入50 μM、200 μM、1 mM的羟胺和200 μM的NH4+。如图2所示,以羟胺和NH4+为底物都有亚硝酸盐的产生。7 C+ C) ^( R0 X) U
0 ~+ Q, O* D/ S
# w2 s( m% G2 z e
! ]8 j. ], e0 W& K) K1 h, |8 o图2
7 o$ P1 e4 R# v& e. J* E$ `6 V( M+ A9 j! c7 v
为了增加说服力,Neeraja Vajrala等人设计了另一个实验:两个实验组的底物分别为200 μM的NH4+和200 μM的羟胺,然后统计两个实验组分别在加入0.1%的乙炔、2.5 mM的ATU(丙烯基硫脲)和空白对照条件下亚硝酸盐的生成量。结果如图3所示,0.1%的乙炔和2.5 mM的ATU都能有效抑制AMO的活性从而阻断NH4+氧化过程,但是AOA仍然可以氧化羟胺,说明羟胺的氧化过程与AMO的活性无关。9 b) @' ]; a9 P8 L9 G, R
8 [% {' `* B+ @% B" M/ ~; u
5 L' G" ~8 z5 ]/ A# f/ u/ O# l, n* z6 l; X! K! H7 s
图3 带有正方形、三角形、圆形的曲线分别对应对照组、加入0.1%乙炔、加入2.5mM的ATU 横轴代表时间,纵轴代表培养基中亚硝酸盐浓度。
/ ~2 D2 L" V/ y% ]: Y a/ _& B- x" z& H+ F3 i/ L
综合上述两个实验可以确定AOA可以氧化羟胺,那此过程是否是其氨氧化的一部分呢?Neeraja Vajrala等人设计了另一个实验,如图4所示,a为在ATU和乙炔存在的条件下加入NH4+和羟胺之后氧气的消耗情况,可以看到在只有NH4+作为底物时,氧气含量不变,在加入羟胺之后,氧气的含量呈线性下降。b为在NH4+存在的情况下加入ATU而后加入羟胺过程的氧气消耗,在加入ATU之前氧气含量呈线性下降,加入ATU之后,氧气含量不再变化,加入羟胺之后,氧气含量继续下降。该实验证明了AOA氧化羟胺需要氧气的参与。
8 l2 G; P3 z: s7 F1 w7 N0 X
, j7 F7 r" \4 r* G0 j( t. p; p7 C: ^
1 h4 f6 c/ {( w) f图4 横轴代表时间,纵轴代表培养基中氧气浓度,箭头代表加入对应试剂。3 Z( T4 R( E/ d/ S2 j% [! v% K
# x: |9 f" G; Z为了进一步验证羟胺的氧化是否与理论相符,Neeraja Vajrala等人设计了另一个实验。如图5所示,羟胺消耗量:氧气消耗量:亚硝酸盐生成量近似等于1:1:1,实验结果表明AOA氧化羟胺的过程是与理论上的羟胺氧气氨三者的比例是吻合的。1 u' Z! q/ \! ]1 @) n% M0 x
) P* V9 ]: _* L* e7 h4 \
为了验证羟胺的氧化与ATP的合成相关联,Neeraja Vajrala等人设计了另外一个实验,在培养体系中加入ATP合成抑制剂CCCP(氧化磷酸解偶联剂)。如图6所示,对比图6A和图6B,可以发现加入CCCP后底物为NH3的实验组几乎不产生亚硝酸盐,而底物为羟胺的实验组的亚硝酸盐生成量显著减少。此结果证明了羟胺的氧化与ATP的合成有关,换言之羟胺氧化是释放能量的过程。
* }6 a1 @: v7 @* r
" `: b2 m+ t- `( U" C除此之外,该实验还有一个有意思的发现,对比图6A和图6B中活细胞实验组的ATP和亚硝酸盐的产生情况,生成等量亚硝酸盐时,底物为羟胺的培养基中的ATP含量远高于底物为NH3的培养基中的ATP含量,由此可以推断,氧化NH3到羟胺是消耗ATP的过程,而从图6B中加入CCCP和不加入CCCP亚硝酸盐的生成量不难看出, 在ATP顺利产生的情况下羟胺的氧化效率更高。
' O; [% O* g B( p4 }. K6 w! k+ p5 u7 b# Z
+ M+ t; C$ v: h) ?( k1 i
2 Y" _0 e; c# s' B; ]* ^图5 正方形代表氧气吸收,对应左侧纵轴;圆形代表羟胺消耗,三角形代表亚硝酸盐生成,这二者对应右侧纵轴。横轴代表时间。
9 s' }* c0 t) W/ p: G7 p+ p4 f; i7 N* h3 r; ] q
( c: s! x" S5 e9 W
- b0 x# ~4 v- k) m T J$ Y图6 白色为不加底物,灰色为加入NH4+作为底物,黑色为加入羟胺作为底物。横轴代表活细胞,加入CCCP的活细胞和加热杀死的细胞。A的纵轴代表培养基中ATP的含量,B的纵轴代表培养基中亚硝酸盐的含量。4 [! |6 q8 d% @. z" B# l
$ k2 o/ v9 _! P5 g3 D* [' s! I
上述几个实验证明,类似于AOB,羟胺的氧化是AOA氨氧化过程的关键步骤,若是能证明AOA会将氨氧化为羟胺,则可以进一步证实羟胺是AOA氨氧化的中间物。
" Y+ h* w/ J! T5 P9 s. N; l F9 W- h; h# E# Z8 W0 v
采取实验的方法很难验证氨氧化生成成羟胺,首先因为羟胺的合成和转化同时进行,其次还因为羟胺氧化过程的酶在AOA中是未知的,无法有效阻断这一步酶催化过程。另外,羟胺非常不稳定,难以直接检测。于是Neeraja Vajrala等人采取了气相色谱法(GC)来分离物质,用同位素比质谱分析(IR-MS)的方法追踪氨氧化的中间产物。如图7A所示,加入15N标记的NH4+后,15NH2OH浓度逐渐上升,代表AOA在利用加入的15NH4+生成15NH2OH,而加入乙炔后,15NH2OH的浓度与羟胺的浓度呈相同的速率减少,这说明乙炔阻断了15NH4+到羟胺的转化。如图7B所示,加入15NH4+后,15NO2-的含量逐渐上升,表明AOA利用了15NH4+生成15NO2-,而在加入乙炔之后,15NO2-的生成逐渐停止而非立刻停止,这说明由NH3到NO2-的转化并非一步反应,其中间产物随时间减少。AB对照即可得出,羟胺为AOA氨氧化的中间产物。
7 g4 u! g/ X, v9 F. u1 ^! m; E, e5 `, p0 b
* _: j- t; N& B9 j
# h2 A$ v- z; r3 V0 ^+ z0 [图7 A:底物为羟胺,虚线代表培养基中羟胺的浓度,对应左侧纵轴;实线表示含有同位素标记的羟胺浓度,对应右侧纵轴,横轴代表时间。B: 底物为NH4+,虚线代表培养基中亚硝酸盐浓度,对应左侧纵轴;实线代表含同位素标记的亚硝酸盐含量对应右侧纵轴,横轴代表时间。" {4 u' q; X8 Y! S9 y
' X5 W. m- W& S9 p- b6 C* @
4 C5 G% q4 R$ K, P: z原标题:PNAS:羟胺是海洋中氨氧化古菌(Nitrosopumilus maritimus)氨氧化过程的中间产物
6 i" p/ \/ X/ X& H作者:张翮, 杨玉春 微生物氮循环
2 W+ B0 e% `8 x( O: O9 G- O- I4 _9 N
|
© 声明:本文仅表作者或发布者个人观点,与环保之家[2TECH.CN]无关。其原创性及陈述文字、内容、数据及图片均未经证实,对本文及其全部或部分内容、图片、文字的真实性、完整性、及时性本站不作任何保证或承诺,仅做参考并自行核实。如有侵权,请联系我们处理,在此深表歉意。
|