渗滤液主流处理工艺介绍及目前存在的问题
$ J$ f0 M5 l, p7 J& Y6 G7 X6 V& S' P: j6 Y$ k! R
! B' s) n- q: D" i c7 h1预处理+生物处理+双膜法(NF+ RO)组合工艺
1 d C, a s8 F6 @6 }- G9 T
' a( T8 `) i1 [0 y! F: p4 A, z组合工艺可满足目前排放标准,该工艺生物处理部分根据进水水质不同,通常采用A/O、多级A/O或者厌氧+A/O的形式,生化出水采用UF(超滤)对活性污泥进行截留,组成MBR系统。生化出水根据排放要求采用NF(纳滤)或者NF+RO(反渗透)的形式,《生活垃圾填埋场污染控制标准》(GB 16889-2008)颁布实施后,对大部分填埋场而言,深度处理采用单一NF工艺很难稳定达标,绝大部分采用NF和RO串联的工艺形式。这一工艺在国内垃圾填埋场、焚烧厂、堆肥场及转运站有着广泛的应用,是目前较为普遍的垃圾渗滤液处理方式,经过近几年的实践,取得了良好、稳定的效果。该工艺工程造价为7万~11万元/m3,单位水量的直接运营成本为20~30元/m3。其中前端生物处理有效提高了系统的耐冲击负荷的能力,再经过后端的膜处理后出水水质较好,但是该工艺运行较为复杂、工艺链长,对操作人员素质要求较高,因此在小型填埋场的渗滤液处理工程中应用较少。
3 R" e2 G0 V5 I9 H# F
1 e; @$ \, r' m此外,采用膜技术以后,在NF单独运行时系统回收率在80%左右,两者串联运行理论上统最高回收率为68%,实际运行很难达到理论水平,系统回收率在60%左右。有20%~40%的浓缩液难以处理,目前多回灌到垃圾填埋场中或外运至污水处理厂。
: m9 Q" t% E+ J/ B6 E' E2 H6 g; ~
6 `; E& K4 z. }4 E& ]) W2两级DTRO(碟管式反渗透)工艺
* Z4 V& G* D2 l' D* b# w
2 C' d# _" }$ s% F# _2 m! g3 q: fDTRO反渗透膜工艺属于专利技术,在德国渗滤液处理中有大量的应用,在国内也有一些案例,尤其是小型填埋场由于设备具有便于启动、运行、自动化程度高的优势,应用广泛。两级DTRO工艺的核心为DTRO成套设备。该成套设备采用碟片竖向挤压形式组成膜柱,不同于目前的螺旋卷式膜组件。特殊的工艺设计,使得该膜组件进水流道宽度达到1 mm,能够承受较高的悬浮物浓度。该工艺具有流程简单、占地面积小、施工周期短和不需要太多调控的优点。设备单位水量工程造价5万~8万元/m3,单位水量直接运行成本25~35元/m3(未包括浓缩液处理)。+ e* I8 r6 ?$ r" O N; g& H/ e
8 s/ H( ^' G4 [: Q! `$ G6 m, V' PDTRO系统主要存在系统回收率低和化学清洗频繁的问题。通常两级DTRO系统设计回收率在70%~75%,由于水质的波动及结垢的影响,系统产水率会逐步下降,实际回收率在50%~60%,产生约40%的浓缩液无法及时处理。DTRO成套设备分为酸洗和碱洗两种工况,通常碱洗 4~7 d,酸洗 8~14 d/次,频繁清洗需要消耗大量的药剂以及影响设备的连续运行。+ P! S w. }2 M U4 G4 ^, y6 h
3 f# Q# E0 E/ O5 o: ?- j4 P, D6 {" _& J
膜处理浓缩液减量化工艺途径
: _6 }6 G; z) m" t
0 z! `8 S+ R- ~: _由于渗滤液膜处理浓缩液含有大量易结垢离子,且很难提取利用,本着减量化、再处理的原则,从整个工艺入手减少浓缩液的产量,再考虑处理问题。
# }; B5 V! `- P: [
1 B5 N: b0 s/ \1提高系统回收率,降低浓缩液的产率, l) }" M' M/ K/ [5 I7 y( B' b" j G# T
2 V- a# H$ {2 j5 k3 n
目前,整个渗滤液处理系统的回收率理论上在63.75%~68%,实际运行在60%左右。系统回收率低已成为制约渗滤液处理工艺发展的瓶颈问题。回收率低的主要原因是膜处理工艺的串联,逐级浓缩确保了水质的稳定、可靠,但造成了浓缩液的逐级产生。由此可见,通过降低膜工艺串联的数量或改变膜工艺形式来提高系统的回收率,具有可行性。推荐的膜工艺形式主要有MBR+RO和MBR+DTRO两种工艺形式。MBR+RO工艺系统回收率可达75%左右,但由于反渗透缺少了纳滤预处理,且MBR出水中含有大量的易结垢物质,因此后续反渗透极易污染,需频繁清洗,造成设备开机率低。MBR+DTRO工艺由于DTRO的特殊构造和高压,因此回收率更高,稳定在80%左右,水质较好时可达85%。但DTRO设备造价昂贵,且运行阻垢剂、清洗剂的专一性导致难以广泛应用。
2 p4 a1 `! s9 q8 H
[9 `" u& ~- y2采用非膜工艺,从源头避免浓缩液的产生" l8 t6 o# }, k$ w7 _# U( U7 O
5 q' E7 o9 u2 A8 T. D6 |; i从工艺源头入手,生化后端采用非膜工艺可避免浓缩液的产生。具有可实施的工艺为高级氧化处理与生化处理的高效集成处理技术,典型应用为“AT-BC系统+二级Fenton(芬顿)+二级BAF(曝气生物滤池)”组合工艺,这一工艺最主要的特点是不采用膜工艺,因此无浓缩液产生。由于渗滤液水质的复杂多变,加之不同地区的气候条件,这一工艺能否大面积推广还需要时间的观察和考验。# e; X1 p# i. y# O3 f) E: A+ \
8 j/ W( m* Z3 [1 ^! u" O
另一方面,由于AT-BC系统为专有技术,且需培养专门的Bacillus菌群和专一的营养液,使得该技术不具备大面积推广空间。根据这一特性,结合目前具有广泛工艺基础的MBR工艺,建议将工艺优化为MBR+NF+ 高级氧化组合工艺。NF浓缩液采用絮凝沉淀后回流至调节池的工艺形式。这样就从源头避免了RO浓缩液的产生,唯一的浓缩液为NF浓缩液。NF浓缩液通过絮凝沉淀将腐殖质去除,可有效解决盐分的累积问题。这一修正工艺相对于原工艺系统更加稳定、可靠,也更具可行性。6 @) |: r$ H t. q
9 G" v* q5 m% M7 K; e$ T: |- l, p q9 e$ R% n e c6 I
膜处理浓缩液处理处置工艺探讨
( X+ L' v* Q Z2 z1 W( k
5 i* K6 |/ ]% Y4 y; s1 NF浓缩液处理工艺1 k- `" h* o6 v- f$ ?/ d8 s
# [4 B! b+ g! W! ^: P
渗滤液NF浓缩液的主要处置办法是回流到调节池,通过调节池长时间的厌氧作用,将NF浓缩液中难生物降解物质转化为可生物降解物质。NF浓缩液中主要含有腐殖酸、富里酸等长链难生物降解物质和二价离子。根据这一特性,目前较为可行的工艺为絮凝沉淀+高级氧化,处理出水不能达标排放,可回流至调节池再处理。经过处理后回流的NF浓缩液可避免直接回流带来的腐殖质和二价盐累积问题。通过絮凝沉淀作用,将腐殖质和二价离子以沉淀的形式排出,通过高级氧化的氧化作用将部分难生物降解物质氧化。
; T: M e* i% H( T$ x3 Q) `& u
1 G9 L, v8 K) z2RO浓缩液处理工艺7 W) E; C0 Z2 q O' A) |8 @
7 g/ V3 W" H: w6 X+ J+ z ?
RO浓缩液的处理一直是行业难点问题,目前尚无可靠、稳定的工程案例。反渗透浓缩液中主要物质为盐分,同时含有大量的氯离子,根据盐分比较稳定的这一特性,工艺采用再浓缩后采用热处理(蒸发、焚烧)的办法比较可行。再浓缩可采用高压反渗透或正渗透处理工艺,热处理的主要工艺路径有焚烧和蒸发两种,焚烧可结合垃圾焚烧厂焚烧炉,采用“喷入垃圾焚烧炉焚烧处理”和“焚烧+尾气净化处理排放”等工艺。蒸发浓缩方面,包括“蒸发浓缩+二次蒸汽焚烧排放”和“蒸发浓缩+冷凝液排放+残渣处置”等方式。这些处理技术,在近几年得到了不同程度的发展,也有了一定的工程实践,但要大面积推广,在技术方面还有一定的困难。主要原因在于无论是焚烧还是蒸发,能耗都非常大,且设备结垢严重、清洗频繁,很难连续可靠运行。此外还有残渣的处置和盐分转移的问题。如采用焚烧工艺将盐分转移到焚烧灰渣,将大大增加焚烧灰渣的处理和利用难度。如采用再浓缩+蒸发工艺,得到结晶盐和最终残液,会面临混合盐处理、处置问题。残渣固化也面临固化稳定性问题,需采用沥青、塑料等不溶性固化处理后才能填埋。
/ x& E5 f' ?* C) r2 F" Z; n3 q4 y2 Y6 e/ ~+ F: j/ s& O7 v& b
8 Y7 E% e0 k3 m# w- q1 N结论和建议! ` p( i0 W! F
5 F0 ^6 u: r @; b(1)垃圾渗滤液具有大量工程实践经验的两种工艺为预处理+生物处理+双膜法组合工艺和碟管式反渗透工艺。两种工艺均能满足排放标准,但均不同程度地带来了浓缩液难处理处置的问题。
6 I& e: \- e8 U. i- _7 w# _
8 m" N! ~- \- x" E7 G(2)预处理+生物处理+双膜法组合工艺在垃圾渗滤液的处理工程中有着广泛的应用,该工艺具有抗冲击负荷能力强、出水水质稳定、处理效果好的优点,但系统回收率在60%左右,有20%~40%的浓缩液难以处理。
+ M$ ]9 o6 v3 ~% R; S3 v5 O" w: L
# b* M$ ] v" T* S9 K# Z(3)浓缩液的处理处置难度很大,可以优化目前工艺,先减量化再处理。可从完善“预处理+MBR+NF/RO”组合处理工艺入手,采用MBR+DTRO工艺和生活后端采用非膜工艺即高级氧化与生化处理高效集成,从而从源头避免浓缩液的产生。NF浓缩液可采用絮凝沉淀+高级氧化工艺处理,出水不能满足排放要求,回流至调节池,避免NF浓缩液直接回流调节池带来的二价离子累积问题。RO浓缩液处理处置难度极大,目前尚无稳定、可靠的处理工艺。
( J0 c6 K( W6 |7 x+ v% k0 w. S; v( t# v2 Q, X
(4)目前国家标准、规范对浓缩液的处理尚未明确,建议明确浓缩液处理最终要求,才能发展高效的浓缩液处理技术。: V7 S: L+ ^- O
4 i# U: j9 e6 \3 h(5)渗滤液源头减量是解决渗滤液问题的可行之路,包括降低垃圾含水率,降低填埋垃圾的有机质含量,填埋作业覆盖及雨污分流等。原标题:垃圾渗滤液膜处理浓缩液的减量化及处理工艺探讨 来源:给水排水 2015年第7期 作者: 赵永志 杨培等
) k$ O% Q4 o" w/ n+ Y+ M% j* _. I/ S8 n
|
© 声明:本文仅表作者或发布者个人观点,与环保之家[2TECH.CN]无关。其原创性及陈述文字、内容、数据及图片均未经证实,对本文及其全部或部分内容、图片、文字的真实性、完整性、及时性本站不作任何保证或承诺,仅做参考并自行核实。如有侵权,请联系我们处理,在此深表歉意。
|