渗滤液主流处理工艺介绍及目前存在的问题0 K/ r8 Z' h. L+ [' h/ N
. A) V5 C6 E i2 x
3 n. e/ e5 x- b1预处理+生物处理+双膜法(NF+ RO)组合工艺
, y, G. {9 s: g+ B/ }: ?3 S! A: m3 A$ O7 o7 g; z+ j$ F
组合工艺可满足目前排放标准,该工艺生物处理部分根据进水水质不同,通常采用A/O、多级A/O或者厌氧+A/O的形式,生化出水采用UF(超滤)对活性污泥进行截留,组成MBR系统。生化出水根据排放要求采用NF(纳滤)或者NF+RO(反渗透)的形式,《生活垃圾填埋场污染控制标准》(GB 16889-2008)颁布实施后,对大部分填埋场而言,深度处理采用单一NF工艺很难稳定达标,绝大部分采用NF和RO串联的工艺形式。这一工艺在国内垃圾填埋场、焚烧厂、堆肥场及转运站有着广泛的应用,是目前较为普遍的垃圾渗滤液处理方式,经过近几年的实践,取得了良好、稳定的效果。该工艺工程造价为7万~11万元/m3,单位水量的直接运营成本为20~30元/m3。其中前端生物处理有效提高了系统的耐冲击负荷的能力,再经过后端的膜处理后出水水质较好,但是该工艺运行较为复杂、工艺链长,对操作人员素质要求较高,因此在小型填埋场的渗滤液处理工程中应用较少。" R& D; x3 }2 N4 l
/ X1 g: n7 p. ?; z$ E. Z( C5 |此外,采用膜技术以后,在NF单独运行时系统回收率在80%左右,两者串联运行理论上统最高回收率为68%,实际运行很难达到理论水平,系统回收率在60%左右。有20%~40%的浓缩液难以处理,目前多回灌到垃圾填埋场中或外运至污水处理厂。
; {% i4 w6 O& v3 K2 b2 H5 P. ~* a( S2 p8 s, Z
2两级DTRO(碟管式反渗透)工艺
" o3 d m5 X6 R$ C/ g* I: |4 ? W# b' q$ P9 N( ~
DTRO反渗透膜工艺属于专利技术,在德国渗滤液处理中有大量的应用,在国内也有一些案例,尤其是小型填埋场由于设备具有便于启动、运行、自动化程度高的优势,应用广泛。两级DTRO工艺的核心为DTRO成套设备。该成套设备采用碟片竖向挤压形式组成膜柱,不同于目前的螺旋卷式膜组件。特殊的工艺设计,使得该膜组件进水流道宽度达到1 mm,能够承受较高的悬浮物浓度。该工艺具有流程简单、占地面积小、施工周期短和不需要太多调控的优点。设备单位水量工程造价5万~8万元/m3,单位水量直接运行成本25~35元/m3(未包括浓缩液处理)。4 b) z' s! D% [2 W4 ]
Y* z) j3 N1 ]% D( L3 k# i, sDTRO系统主要存在系统回收率低和化学清洗频繁的问题。通常两级DTRO系统设计回收率在70%~75%,由于水质的波动及结垢的影响,系统产水率会逐步下降,实际回收率在50%~60%,产生约40%的浓缩液无法及时处理。DTRO成套设备分为酸洗和碱洗两种工况,通常碱洗 4~7 d,酸洗 8~14 d/次,频繁清洗需要消耗大量的药剂以及影响设备的连续运行。, p3 Z3 S/ `6 r+ ?. ?
( v* P5 u+ g( p1 R- j
. a! M: l* ?, a3 V" ^# @, N
膜处理浓缩液减量化工艺途径- e2 d. A7 @$ C% z+ t3 L
8 {6 f; k! W8 v, H' W3 N由于渗滤液膜处理浓缩液含有大量易结垢离子,且很难提取利用,本着减量化、再处理的原则,从整个工艺入手减少浓缩液的产量,再考虑处理问题。
# a# X, H$ O% ^; c, T2 n. Q! {8 Z4 }3 b1 \: l$ w
1提高系统回收率,降低浓缩液的产率
2 k7 |7 K" K% j6 ]" w; ]; y
+ V. A/ h! ~6 p9 O) ]& Y( P, @4 A目前,整个渗滤液处理系统的回收率理论上在63.75%~68%,实际运行在60%左右。系统回收率低已成为制约渗滤液处理工艺发展的瓶颈问题。回收率低的主要原因是膜处理工艺的串联,逐级浓缩确保了水质的稳定、可靠,但造成了浓缩液的逐级产生。由此可见,通过降低膜工艺串联的数量或改变膜工艺形式来提高系统的回收率,具有可行性。推荐的膜工艺形式主要有MBR+RO和MBR+DTRO两种工艺形式。MBR+RO工艺系统回收率可达75%左右,但由于反渗透缺少了纳滤预处理,且MBR出水中含有大量的易结垢物质,因此后续反渗透极易污染,需频繁清洗,造成设备开机率低。MBR+DTRO工艺由于DTRO的特殊构造和高压,因此回收率更高,稳定在80%左右,水质较好时可达85%。但DTRO设备造价昂贵,且运行阻垢剂、清洗剂的专一性导致难以广泛应用。; w/ X- q5 K/ w* d( N: P7 a
: v+ B/ S1 Q; m( L2采用非膜工艺,从源头避免浓缩液的产生
# p- a: `+ e! u, J- Z1 e
' W* S* {0 L/ Z) w& z+ R从工艺源头入手,生化后端采用非膜工艺可避免浓缩液的产生。具有可实施的工艺为高级氧化处理与生化处理的高效集成处理技术,典型应用为“AT-BC系统+二级Fenton(芬顿)+二级BAF(曝气生物滤池)”组合工艺,这一工艺最主要的特点是不采用膜工艺,因此无浓缩液产生。由于渗滤液水质的复杂多变,加之不同地区的气候条件,这一工艺能否大面积推广还需要时间的观察和考验。9 Z6 @# \$ }( h) F# ?7 D4 t0 E
6 U: R3 m% r g
另一方面,由于AT-BC系统为专有技术,且需培养专门的Bacillus菌群和专一的营养液,使得该技术不具备大面积推广空间。根据这一特性,结合目前具有广泛工艺基础的MBR工艺,建议将工艺优化为MBR+NF+ 高级氧化组合工艺。NF浓缩液采用絮凝沉淀后回流至调节池的工艺形式。这样就从源头避免了RO浓缩液的产生,唯一的浓缩液为NF浓缩液。NF浓缩液通过絮凝沉淀将腐殖质去除,可有效解决盐分的累积问题。这一修正工艺相对于原工艺系统更加稳定、可靠,也更具可行性。* |) V: ~" B4 O T& N. h
( g% `1 K* \5 I; @7 o- s5 j- t
0 l+ g* m) O/ O3 |膜处理浓缩液处理处置工艺探讨
& B9 K+ s) l: X& p; P0 @
5 W; H) ~" S. d( p/ H1 NF浓缩液处理工艺( `! _. I& A- ~
0 ]/ K* B7 w6 M1 j4 E X* J* u渗滤液NF浓缩液的主要处置办法是回流到调节池,通过调节池长时间的厌氧作用,将NF浓缩液中难生物降解物质转化为可生物降解物质。NF浓缩液中主要含有腐殖酸、富里酸等长链难生物降解物质和二价离子。根据这一特性,目前较为可行的工艺为絮凝沉淀+高级氧化,处理出水不能达标排放,可回流至调节池再处理。经过处理后回流的NF浓缩液可避免直接回流带来的腐殖质和二价盐累积问题。通过絮凝沉淀作用,将腐殖质和二价离子以沉淀的形式排出,通过高级氧化的氧化作用将部分难生物降解物质氧化。' R1 Y9 a3 l9 P# b* ~
0 w8 x; h3 p4 }. j2RO浓缩液处理工艺7 F+ i1 M5 G+ b9 i, I" S% n2 z
8 k; H$ k/ b+ URO浓缩液的处理一直是行业难点问题,目前尚无可靠、稳定的工程案例。反渗透浓缩液中主要物质为盐分,同时含有大量的氯离子,根据盐分比较稳定的这一特性,工艺采用再浓缩后采用热处理(蒸发、焚烧)的办法比较可行。再浓缩可采用高压反渗透或正渗透处理工艺,热处理的主要工艺路径有焚烧和蒸发两种,焚烧可结合垃圾焚烧厂焚烧炉,采用“喷入垃圾焚烧炉焚烧处理”和“焚烧+尾气净化处理排放”等工艺。蒸发浓缩方面,包括“蒸发浓缩+二次蒸汽焚烧排放”和“蒸发浓缩+冷凝液排放+残渣处置”等方式。这些处理技术,在近几年得到了不同程度的发展,也有了一定的工程实践,但要大面积推广,在技术方面还有一定的困难。主要原因在于无论是焚烧还是蒸发,能耗都非常大,且设备结垢严重、清洗频繁,很难连续可靠运行。此外还有残渣的处置和盐分转移的问题。如采用焚烧工艺将盐分转移到焚烧灰渣,将大大增加焚烧灰渣的处理和利用难度。如采用再浓缩+蒸发工艺,得到结晶盐和最终残液,会面临混合盐处理、处置问题。残渣固化也面临固化稳定性问题,需采用沥青、塑料等不溶性固化处理后才能填埋。
% i. O, z4 P& Z7 [( n. d. l8 i1 g' h- Q \6 X3 K
8 ^% {: z4 {) @+ K- W _0 ?
结论和建议
( l; Y) L) o- i$ k2 ~
& C" q! y: G0 | K6 Q(1)垃圾渗滤液具有大量工程实践经验的两种工艺为预处理+生物处理+双膜法组合工艺和碟管式反渗透工艺。两种工艺均能满足排放标准,但均不同程度地带来了浓缩液难处理处置的问题。7 R' ]. m. t! k+ H
# ^7 h) \( r* n: t
(2)预处理+生物处理+双膜法组合工艺在垃圾渗滤液的处理工程中有着广泛的应用,该工艺具有抗冲击负荷能力强、出水水质稳定、处理效果好的优点,但系统回收率在60%左右,有20%~40%的浓缩液难以处理。
' t' R' ~2 G. B7 K/ K( H& T4 v; c& x2 D% b+ @6 y
(3)浓缩液的处理处置难度很大,可以优化目前工艺,先减量化再处理。可从完善“预处理+MBR+NF/RO”组合处理工艺入手,采用MBR+DTRO工艺和生活后端采用非膜工艺即高级氧化与生化处理高效集成,从而从源头避免浓缩液的产生。NF浓缩液可采用絮凝沉淀+高级氧化工艺处理,出水不能满足排放要求,回流至调节池,避免NF浓缩液直接回流调节池带来的二价离子累积问题。RO浓缩液处理处置难度极大,目前尚无稳定、可靠的处理工艺。
+ k3 b1 F2 h2 g F* T! `) M4 l* m% G2 }
(4)目前国家标准、规范对浓缩液的处理尚未明确,建议明确浓缩液处理最终要求,才能发展高效的浓缩液处理技术。
+ o1 c- d# T* D9 R
8 j+ V2 `& u8 [7 Z9 ?# ^(5)渗滤液源头减量是解决渗滤液问题的可行之路,包括降低垃圾含水率,降低填埋垃圾的有机质含量,填埋作业覆盖及雨污分流等。原标题:垃圾渗滤液膜处理浓缩液的减量化及处理工艺探讨 来源:给水排水 2015年第7期 作者: 赵永志 杨培等
& `" ~/ V8 F1 q
( K! S; g+ P% s8 P4 l, L |
© 声明:本文仅表作者或发布者个人观点,与环保之家[2TECH.CN]无关。其原创性及陈述文字、内容、数据及图片均未经证实,对本文及其全部或部分内容、图片、文字的真实性、完整性、及时性本站不作任何保证或承诺,仅做参考并自行核实。如有侵权,请联系我们处理,在此深表歉意。
|