选择性非催化还原反应(SNCR)是目前我国水泥生产企业广泛采用的脱硝技术。通过将氨水、尿素等还原剂以一定速度喷入分解炉中合适的温度窗口,将烟气中的NOx还原为N2,从而降低NOx排放量。尽管几乎所有水泥生产线NOx排放浓度都能达到国家标准要求,但还原剂用量差别非常大,如国内5000t/d熟料生产线氨水用量从200-300 L/h到1800-2000 L/h不等。还原剂用量不一、出口NOx浓度差异大,这除了与窑炉燃烧产生的初始NOx水平有关外,还与SNCR自身脱硝效率有更大关系。本文针对水泥窑炉SNCR反应机制进行探讨,以求降低还原剂用量,实现SNCR的优化运行。- [6 a/ Y: Y+ h6 d( W# p9 K
! M4 S4 A C3 q! d, D& p3 K9 u7 Q# r3 }5 _' H3 d
1. 还原剂与烟气中NOx的混合效果9 a/ H9 R! W% j% J; l
# L `, [+ b* V+ p; z9 H2 n7 z; C! v对于任何气相化学反应,反应物之间混合情况直接影响反应速率。沃托兰廷、伯利休斯等研究表明,在还原剂喷入位置等条件相同时,水泥生产线规模越大,SNCR脱硝效率越低;原因在于规模越小的生产线设备尺寸越小,喷入的还原剂与烟气中NOx混合情况较好,脱硝效率较高,反之,脱硝效率较低。对于规模一定的生产线,还原剂与NOx的混合问题主要表现在以下两方面。
/ k6 s+ L9 q1 }* z z2 n" n2 C! {- }$ P& u1 I
第一,喷入的氨水无法及时到达分解炉中心,只能与分解炉周边烟气中的NOx发生反应。本文作者曾利用CFD对某5000t/d生产线分解炉内燃烧与分解反应进行模拟,在此基础上对还原剂喷入分解炉后的颗粒轨迹进行计算分析,结果如图1所示,其中颜色越深表明颗粒运动时间越长。
5 ^% L* D' J; i2 F8 Y/ t0 X* w) N) `+ e3 Y# z+ A" X
( s5 k, J- w2 H1 A7 ]
! M% ~4 z: M" T4 v( }图1 还原剂喷入分解炉后的运动轨迹3 l9 I6 r4 C( Z" r0 G/ @
8 R5 I1 i. j, x. y: H. T/ ~; [如图1所示,虽然还原剂以20m/s的速度喷入分解炉,但迅速被炉内大量烟气带走,无法及时与分解炉中部大量烟气接触,导致分解炉边部还原剂浓度过高,而中部还原剂浓度过低,大大降低了SNCR脱硝效率。上述现象在水泥生产企业得到证实,如有些企业氨水喷枪损坏后,喷入的氨水雾化效果变差,但由于之前喷入的氨水与烟气中NOx混合情况就比较差(如图1所示),喷枪雾化效果变差并没有引起氨水用量的显著增加;另外,增加喷枪数量理论可以获得还原剂与烟气更好的混合效果,但实际应用表明增加喷枪并没有明显降低还原剂用量。与此同时,有些企业通过将位于分解炉出口的喷枪转移到C5预热器出口,由于此处烟气中NOx分布均匀且截面积较小,从而提高了SNCR脱硝效率。
) a( Z: Q: K4 e' F
1 _ H; {# u" C5 }0 E3 B" D第二,同一截面不同还原剂喷枪喷入位置的NOx分布不均。由于分解炉内具有喷腾、旋流等效应,导致分解炉烟气存在一定程度的分层现象,同一截面不同位置NOx浓度差异较大。应用CFD对某5000t/d生产线还原剂喷入位置的NOx浓度进行计算,结果如图2所示。
/ I8 N+ u/ E1 ] k; q
* a' T6 @* \; j/ Q' ?! b
+ ]4 i9 r: [2 w3 V) G1 i& ?
. A1 W9 F4 ~& K J$ d
图2还原剂喷入位置截面NOx体积浓度分数(%)及截面均分方法' J$ n- L5 N& l! |$ p* V$ l) O
% v3 b3 f8 b- g3 Q
由图2可知,NOx在同一截面的分布存在显著差异。将该截面均匀分为四等分,分别记为左前、左后、右前、右后,如图2所示。截面每部分NOx浓度平均值如表1所示。+ h( ~7 A: u, U: P% {
' x4 l/ K6 X# ]# [% U
表1 还原剂喷入位置截面不同部位NOx浓度平均值
D( Z! H6 j+ g
0 N+ O$ F. m, f/ R& l _' p( W由表1可知,左后部分NO平均浓度最大,右前部分NO平均浓度最小,两者差别达到近170 ppm。我们对某5000t/d生产线分解炉(TDF)在还原剂喷入位置(鹅颈管出口)的实际测试表明,同一高度不同位置NOx浓度差超过了200 ppm。由于目前所有喷枪的还原剂喷入量一般相同,这使得NOx浓度较高的区域氨氮摩尔比(NSR)较低,而NOx浓度较低的区域NSR较高,从而降低了SNCR的脱硝效率。 ^' X" X9 r9 `' X! i
; _8 h/ M- t w, K2 O( g2 w
(1)CO会影响SNCR脱硝反应温度
; y, ?% Q1 @2 p+ N! r j. o( n! J" }+ U
: }3 C, p6 }( T3 o m) g4 {/ }
CO的存在显著降低了SNCR反应温度窗口,且CO浓度越高,SNCR反应温度窗口越低。当CO浓度为100 ppm时,SNCR反应最佳温度约为950℃;当CO浓度增加到1000 ppm时,SNCR反应最佳温度约为850℃;当CO浓度达到5000 ppm时,SNCR反应最佳温度只有750℃。该现象也在我国水泥生产企业得到证实。
3 z4 G+ N- Q- ^& r3 Z3 l: ?' f" y; i- B: |8 ]& u
. H/ B4 P. C; F& o3 O0 q4 A- T6 H. D: `( V$ g% N8 W7 X
, i- L! c# ?) U% _; L7 @
CO浓度对SNCR反应效率的影响* B$ Q: v% k- ~& ^9 Q. j, |
9 X& J$ r- u5 B9 u$ n$ k) ^0 J
(初始NOx=500ppm,还原剂为氨水,NSR=1.5)
1 l# ]6 ?" p/ f% p5 r, t, s
! |) ^) b' ~/ H9 v5 m(2)CO浓度会降低SNCR脱硝效率" G7 T# v: o2 X8 C9 i6 W6 D
' R2 G8 M5 x9 o
诸多研究表明,NH3与NOx反应之前,必须先生成NH2;触发NH3生成NH2的反应有多个,其中最重要的是NH3与OH的反应。OH来源于燃烧后的烟气,其同时也是CO氧化的反应物。由此,NH3和CO形成了对OH的竞争关系,如下所示。+ A: L4 f' ~ E# ?0 e( s& s
- R1 P; l3 S' s. aNH3+OH→NH2+H2O (4)
* S2 \, U2 v1 x: M4 h& P, d5 A2 R9 r8 y' m
CO+OH→CO2+H (5)
+ `: _, d/ M- w8 B0 N* W( G0 M. y9 }
简单来看,CO的存在会和NH3争夺OH,从而减少了NH2的生成,降低SNCR反应效率。但是,CO为什么又能降低SNCR反应温度窗口呢?这主要是由于上述反应产生的H会继续进行如下反应:
1 p/ b7 O, s$ l3 W% J$ I; t7 {9 Q0 m! ^" b4 x1 U" h0 O9 D
H+O2→OH+O
' Y- m+ s( G7 B8 I& g$ f* k$ c# A1 J; v
O+H2O→2OH
Y& R5 x( Y5 h- s. \% [* X4 p# h
% y6 r+ {* F' ]) g' m6 ]! ^当O2充足时,OH含量不仅没有因为反应(5)而减少,反而因为后续的链式反应而增加;除此,反应(5)是放热反应,有利于提高局部温度。OH含量的增加和反应(5)放出的热量,使得反应(4)在较低温度下得以较快进行,所以SNCR反应温度窗口降低。然而,OH含量的增加使得整体反应速率都加快,O含量也增加,O的增加促使更多NH2发生氧化反应生成NO,从而降低了SNCR脱硝效率,这也是建设SNCR系统时需要保证还原剂喷入位置CO浓度小于300 ppm的原因。除此,由于对OH的竞争关系,NH3的喷入会增加烟气中CO的含量。- g/ B/ d# n7 D! f
5 C1 `# J: ~# k2 m4 S% Y0 z: V
德国Bauverlag公司对三条使用PREPOL-MSC的分解炉进行了SNCR脱硝实验。该分解炉具有分级燃烧特点,部分燃料直接喂入窑尾烟室,以削减窑内NOx;为了增强燃烧后烟气与氧气的混合,在三次风管上方安装有扰流室,以保证完全燃烧。实验时,将氨水分别喷入分解炉三个部分,即仍处于燃烧状态的还原区域(930-990℃)、三次风管与扰流室之间的氧化区域(890℃)、扰流室与末级预热器之间的氧化区域(850-870℃)。结果表明,喷入氨水的位置越远离燃烧区域,脱硝效率越高。
6 f$ W/ P) W2 I
- {; Y7 V# ?' X3 U0 O9 G' U(3)结论
+ ]0 t) f3 q6 [5 t& I0 j3 z7 |: L& ^% f+ B
氨水喷枪移动到C5预热器出口后,部分企业氨水用量明显减少,部分企业变化不明显,这除了与反应时间有关外,更多取决于分解炉内CO的浓度。如果分解炉CO浓度并不高,将喷枪移到C5预热器出口,SNCR脱硝效率会因为C5出口温度较低而下降;如果分解炉CO浓度较高,将喷枪移到C5预热器出口具有以下优势,一方面避免分解炉喷入位置CO含量较高而导致实际温度超过SNCR温度窗口,另一方面移动到C5出口后,CO浓度有所降低,这有利于SNCR脱硝反应的进行。来源:水泥,2018年第2期。
+ e1 ~# V7 T4 O& O9 y8 A9 t
- m d! U* F; t, `2 S7 V |
© 声明:本文仅表作者或发布者个人观点,与环保之家[2TECH.CN]无关。其原创性及陈述文字、内容、数据及图片均未经证实,对本文及其全部或部分内容、图片、文字的真实性、完整性、及时性本站不作任何保证或承诺,仅做参考并自行核实。如有侵权,请联系我们处理,在此深表歉意。
|