脱硫脱硝 解析:水泥窑炉SNCR脱硝反应机制及运行 [复制链接]

2480 0
发表于 2021-4-7 16:22:54 | 查看全部 | 阅读模式
京东
选择性非催化还原反应(SNCR)是目前我国水泥生产企业广泛采用的脱硝技术。通过将氨水、尿素等还原剂以一定速度喷入分解炉中合适的温度窗口,将烟气中的NOx还原为N2,从而降低NOx排放量。尽管几乎所有水泥生产线NOx排放浓度都能达到国家标准要求,但还原剂用量差别非常大,如国内5000t/d熟料生产线氨水用量从200-300 L/h到1800-2000 L/h不等。还原剂用量不一、出口NOx浓度差异大,这除了与窑炉燃烧产生的初始NOx水平有关外,还与SNCR自身脱硝效率有更大关系。本文针对水泥窑炉SNCR反应机制进行探讨,以求降低还原剂用量,实现SNCR的优化运行。
8 n" @# m& N9 K4 m
" p" m; }7 c$ W9 M# z) O, u3 w* {
2 B  t3 |/ {" o4 G) f2 N1. 还原剂与烟气中NOx的混合效果- B0 I  n0 s# q! {0 x) o; w8 i
2 l: R6 B  Q( i9 t
对于任何气相化学反应,反应物之间混合情况直接影响反应速率。沃托兰廷、伯利休斯等研究表明,在还原剂喷入位置等条件相同时,水泥生产线规模越大,SNCR脱硝效率越低;原因在于规模越小的生产线设备尺寸越小,喷入的还原剂与烟气中NOx混合情况较好,脱硝效率较高,反之,脱硝效率较低。对于规模一定的生产线,还原剂与NOx的混合问题主要表现在以下两方面。0 Q  A5 Y( w8 |+ q* J2 y7 ^
# p0 r+ F1 B  I4 O
第一,喷入的氨水无法及时到达分解炉中心,只能与分解炉周边烟气中的NOx发生反应。本文作者曾利用CFD对某5000t/d生产线分解炉内燃烧与分解反应进行模拟,在此基础上对还原剂喷入分解炉后的颗粒轨迹进行计算分析,结果如图1所示,其中颜色越深表明颗粒运动时间越长。
/ c! Y$ i* r3 \! y: a1 n( d( e+ E# `( o9 Z/ k8 k
环保之家.JPG 3 d$ E# g! V5 o

/ a4 l# c: A! ^8 h7 }& W3 E$ @# j% ]图1 还原剂喷入分解炉后的运动轨迹  f# N0 K8 e$ k# \

" [$ _2 O  w0 `" {" T3 T如图1所示,虽然还原剂以20m/s的速度喷入分解炉,但迅速被炉内大量烟气带走,无法及时与分解炉中部大量烟气接触,导致分解炉边部还原剂浓度过高,而中部还原剂浓度过低,大大降低了SNCR脱硝效率。上述现象在水泥生产企业得到证实,如有些企业氨水喷枪损坏后,喷入的氨水雾化效果变差,但由于之前喷入的氨水与烟气中NOx混合情况就比较差(如图1所示),喷枪雾化效果变差并没有引起氨水用量的显著增加;另外,增加喷枪数量理论可以获得还原剂与烟气更好的混合效果,但实际应用表明增加喷枪并没有明显降低还原剂用量。与此同时,有些企业通过将位于分解炉出口的喷枪转移到C5预热器出口,由于此处烟气中NOx分布均匀且截面积较小,从而提高了SNCR脱硝效率。
& P4 J- u3 e! r3 U5 W1 A6 s/ a. [; L* C1 I2 G+ {+ k
第二,同一截面不同还原剂喷枪喷入位置的NOx分布不均。由于分解炉内具有喷腾、旋流等效应,导致分解炉烟气存在一定程度的分层现象,同一截面不同位置NOx浓度差异较大。应用CFD对某5000t/d生产线还原剂喷入位置的NOx浓度进行计算,结果如图2所示。4 O, X, }! ^' o) x

5 q7 b" S1 `8 V9 n0 v 环保之家1.JPG
! x& y: X$ T+ V# G3 g& v6 ?
9 c" V% S3 l( Q# d7 a  W$ \" p$ ]+ b图2还原剂喷入位置截面NOx体积浓度分数(%)及截面均分方法0 Y4 _* y7 |( L
. j! {; ]7 x; _: m) t+ q2 g
由图2可知,NOx在同一截面的分布存在显著差异。将该截面均匀分为四等分,分别记为左前、左后、右前、右后,如图2所示。截面每部分NOx浓度平均值如表1所示。+ A# f( w' h, w2 I8 Y$ l$ Y! E" d- ?
/ ~  L9 {$ e3 X% \8 P/ C
表1 还原剂喷入位置截面不同部位NOx浓度平均值* y9 h8 I. l5 _! d8 K
位置
左前
左后
右前
右后
NOx浓度/ppm
906
968
801
950
5 p$ I2 m- ?. [' O" {
9 {0 i; i' o5 x6 m  p% Y* P
由表1可知,左后部分NO平均浓度最大,右前部分NO平均浓度最小,两者差别达到近170 ppm。我们对某5000t/d生产线分解炉(TDF)在还原剂喷入位置(鹅颈管出口)的实际测试表明,同一高度不同位置NOx浓度差超过了200 ppm。由于目前所有喷枪的还原剂喷入量一般相同,这使得NOx浓度较高的区域氨氮摩尔比(NSR)较低,而NOx浓度较低的区域NSR较高,从而降低了SNCR的脱硝效率。- d5 X, @2 B5 v  D) a0 L+ F

# s) u2 j/ r' Z; d3 L(1)CO会影响SNCR脱硝反应温度0 ~8 e( H- T% }2 R' ~

- n- _% c! ?0 k: x) h; w; Y6 w7 l$ [! ]4 q2 F; c1 {6 ?7 F2 f
CO的存在显著降低了SNCR反应温度窗口,且CO浓度越高,SNCR反应温度窗口越低。当CO浓度为100 ppm时,SNCR反应最佳温度约为950℃;当CO浓度增加到1000 ppm时,SNCR反应最佳温度约为850℃;当CO浓度达到5000 ppm时,SNCR反应最佳温度只有750℃。该现象也在我国水泥生产企业得到证实。% g! x- X6 C' p/ Y8 s- H$ R% W

  O) _2 Y* D/ _+ m# A 环保之家2.JPG
3 u, [& B4 A; p8 Y9 L0 I3 B: Z6 R$ _& v0 F

6 @2 q$ `7 N  E4 `CO浓度对SNCR反应效率的影响# W  b  T4 W5 u( t/ n

! O  S4 O2 [: G# [+ o3 l: i! V& g(初始NOx=500ppm,还原剂为氨水,NSR=1.5)
0 Y+ C, \5 L9 c* L% K* Y' k; a/ t# l% a5 [# }
(2)CO浓度会降低SNCR脱硝效率/ \0 H. X3 [6 \5 V; k
! L; G% p( ]! W! H
诸多研究表明,NH3与NOx反应之前,必须先生成NH2;触发NH3生成NH2的反应有多个,其中最重要的是NH3与OH的反应。OH来源于燃烧后的烟气,其同时也是CO氧化的反应物。由此,NH3和CO形成了对OH的竞争关系,如下所示。. X4 K( m5 }+ I/ A

* Z" w, v3 ~1 I4 q" Y7 @5 xNH3+OH→NH2+H2O                    (4)   $ P2 r) A# `6 V2 a9 F

2 i- q1 X+ K& W* _6 C% {CO+OH→CO2+H                         (5)  
! D; s3 Y  @2 W' F8 t2 O! e
  z# m5 f2 a( q1 ~; _简单来看,CO的存在会和NH3争夺OH,从而减少了NH2的生成,降低SNCR反应效率。但是,CO为什么又能降低SNCR反应温度窗口呢?这主要是由于上述反应产生的H会继续进行如下反应:
* F2 V9 M: w3 U
8 a. k7 l. T5 p$ CH+O2→OH+O                             
/ w- S9 X/ p& u  ?& e  U' ^
1 G; A- J4 E4 l& TO+H2O→2OH                             
$ A/ ]  o, [0 ]! n5 F1 p
* q5 `% L! ?& C% |当O2充足时,OH含量不仅没有因为反应(5)而减少,反而因为后续的链式反应而增加;除此,反应(5)是放热反应,有利于提高局部温度。OH含量的增加和反应(5)放出的热量,使得反应(4)在较低温度下得以较快进行,所以SNCR反应温度窗口降低。然而,OH含量的增加使得整体反应速率都加快,O含量也增加,O的增加促使更多NH2发生氧化反应生成NO,从而降低了SNCR脱硝效率,这也是建设SNCR系统时需要保证还原剂喷入位置CO浓度小于300  ppm的原因。除此,由于对OH的竞争关系,NH3的喷入会增加烟气中CO的含量。) A9 g! z" Q6 J8 ~
: e8 ~# A5 m6 O9 |8 m
德国Bauverlag公司对三条使用PREPOL-MSC的分解炉进行了SNCR脱硝实验。该分解炉具有分级燃烧特点,部分燃料直接喂入窑尾烟室,以削减窑内NOx;为了增强燃烧后烟气与氧气的混合,在三次风管上方安装有扰流室,以保证完全燃烧。实验时,将氨水分别喷入分解炉三个部分,即仍处于燃烧状态的还原区域(930-990℃)、三次风管与扰流室之间的氧化区域(890℃)、扰流室与末级预热器之间的氧化区域(850-870℃)。结果表明,喷入氨水的位置越远离燃烧区域,脱硝效率越高。6 O+ t9 \9 g* o0 \5 f

& I. y8 m' ?3 Z(3)结论/ b* J) r$ g. b( B1 }9 h' v& j0 |$ e

( Z, {( Y" }* u# P氨水喷枪移动到C5预热器出口后,部分企业氨水用量明显减少,部分企业变化不明显,这除了与反应时间有关外,更多取决于分解炉内CO的浓度。如果分解炉CO浓度并不高,将喷枪移到C5预热器出口,SNCR脱硝效率会因为C5出口温度较低而下降;如果分解炉CO浓度较高,将喷枪移到C5预热器出口具有以下优势,一方面避免分解炉喷入位置CO含量较高而导致实际温度超过SNCR温度窗口,另一方面移动到C5出口后,CO浓度有所降低,这有利于SNCR脱硝反应的进行。来源:水泥,2018年第2期。  W. _( Q! V1 Y$ G7 i1 t1 A5 P
$ j( u# U5 _! t( C

© 声明:本文仅表作者或发布者个人观点,与环保之家[2TECH.CN]无关。其原创性及陈述文字、内容、数据及图片均未经证实,对本文及其全部或部分内容、图片、文字的真实性、完整性、及时性本站不作任何保证或承诺,仅做参考并自行核实。如有侵权,请联系我们处理,在此深表歉意。

举报 回复

您需要登录后才可以回帖 登录 | 中文注册

本版积分规则

更多

客服中心

2121-416-824 周一至周五10:30-16:30
快速回复 返回顶部 返回列表
现在加入我们,拥有环保之家一站式通行证!马上 中文注册 账号登陆