脱硫脱硝 解析:水泥窑炉SNCR脱硝反应机制及运行 [复制链接]

2302 0
京东
选择性非催化还原反应(SNCR)是目前我国水泥生产企业广泛采用的脱硝技术。通过将氨水、尿素等还原剂以一定速度喷入分解炉中合适的温度窗口,将烟气中的NOx还原为N2,从而降低NOx排放量。尽管几乎所有水泥生产线NOx排放浓度都能达到国家标准要求,但还原剂用量差别非常大,如国内5000t/d熟料生产线氨水用量从200-300 L/h到1800-2000 L/h不等。还原剂用量不一、出口NOx浓度差异大,这除了与窑炉燃烧产生的初始NOx水平有关外,还与SNCR自身脱硝效率有更大关系。本文针对水泥窑炉SNCR反应机制进行探讨,以求降低还原剂用量,实现SNCR的优化运行。
% Z" t, H3 s/ w* d/ G' f+ M$ s3 P  t: N" y. z: v6 a. N9 e

" S$ L7 k" L0 F% L/ L% n1. 还原剂与烟气中NOx的混合效果
; u$ T% ^( j" D& [" R0 N
& L8 V3 k$ p3 @4 o: I' T) ]5 _对于任何气相化学反应,反应物之间混合情况直接影响反应速率。沃托兰廷、伯利休斯等研究表明,在还原剂喷入位置等条件相同时,水泥生产线规模越大,SNCR脱硝效率越低;原因在于规模越小的生产线设备尺寸越小,喷入的还原剂与烟气中NOx混合情况较好,脱硝效率较高,反之,脱硝效率较低。对于规模一定的生产线,还原剂与NOx的混合问题主要表现在以下两方面。
8 L0 `% T; R+ A% O# B' t3 _
7 R2 W. g( @9 `+ }第一,喷入的氨水无法及时到达分解炉中心,只能与分解炉周边烟气中的NOx发生反应。本文作者曾利用CFD对某5000t/d生产线分解炉内燃烧与分解反应进行模拟,在此基础上对还原剂喷入分解炉后的颗粒轨迹进行计算分析,结果如图1所示,其中颜色越深表明颗粒运动时间越长。' ~) Z# c* n5 M; @* H
+ [3 c. C0 E4 P& L" Z
环保之家.JPG ' p# C2 M6 ~+ Y1 s

+ M7 E2 m. w4 F7 s! O" E  A图1 还原剂喷入分解炉后的运动轨迹8 E5 t  [+ k8 t

9 ]  _- Q) j" E- F4 u如图1所示,虽然还原剂以20m/s的速度喷入分解炉,但迅速被炉内大量烟气带走,无法及时与分解炉中部大量烟气接触,导致分解炉边部还原剂浓度过高,而中部还原剂浓度过低,大大降低了SNCR脱硝效率。上述现象在水泥生产企业得到证实,如有些企业氨水喷枪损坏后,喷入的氨水雾化效果变差,但由于之前喷入的氨水与烟气中NOx混合情况就比较差(如图1所示),喷枪雾化效果变差并没有引起氨水用量的显著增加;另外,增加喷枪数量理论可以获得还原剂与烟气更好的混合效果,但实际应用表明增加喷枪并没有明显降低还原剂用量。与此同时,有些企业通过将位于分解炉出口的喷枪转移到C5预热器出口,由于此处烟气中NOx分布均匀且截面积较小,从而提高了SNCR脱硝效率。
) V$ m8 m1 I" A. k
' q2 u1 I: a7 v' L第二,同一截面不同还原剂喷枪喷入位置的NOx分布不均。由于分解炉内具有喷腾、旋流等效应,导致分解炉烟气存在一定程度的分层现象,同一截面不同位置NOx浓度差异较大。应用CFD对某5000t/d生产线还原剂喷入位置的NOx浓度进行计算,结果如图2所示。7 M  }0 h- [. c  G

4 `6 l# L- R+ Z4 ~* T; w% t/ l& c 环保之家1.JPG 1 ?; V5 q6 Z( _1 W% R
: Y1 W0 r) l" w: X. Q
图2还原剂喷入位置截面NOx体积浓度分数(%)及截面均分方法
+ @5 P4 b0 ?# c, B4 f* X/ |$ r# r3 B( }- ~: c# {1 t; }1 J
由图2可知,NOx在同一截面的分布存在显著差异。将该截面均匀分为四等分,分别记为左前、左后、右前、右后,如图2所示。截面每部分NOx浓度平均值如表1所示。
& B: C. l5 n7 P8 d3 {, j7 h, ~. U6 O2 D% A
表1 还原剂喷入位置截面不同部位NOx浓度平均值) x# x0 h/ |% [8 V: t
位置
左前
左后
右前
右后
NOx浓度/ppm
906
968
801
950

! P4 g* ?: x8 x

/ E  H2 m5 h: S8 R6 P' ?/ i0 F8 S由表1可知,左后部分NO平均浓度最大,右前部分NO平均浓度最小,两者差别达到近170 ppm。我们对某5000t/d生产线分解炉(TDF)在还原剂喷入位置(鹅颈管出口)的实际测试表明,同一高度不同位置NOx浓度差超过了200 ppm。由于目前所有喷枪的还原剂喷入量一般相同,这使得NOx浓度较高的区域氨氮摩尔比(NSR)较低,而NOx浓度较低的区域NSR较高,从而降低了SNCR的脱硝效率。* p+ {! V6 B5 W9 a8 D  ]

0 J+ u4 u) U! T8 T$ N+ E( ~(1)CO会影响SNCR脱硝反应温度
/ O2 @* T' V% W$ v  [- l
4 b3 ~' i& T/ i$ V; a# q
3 o- }4 v% S0 J7 a* X& wCO的存在显著降低了SNCR反应温度窗口,且CO浓度越高,SNCR反应温度窗口越低。当CO浓度为100 ppm时,SNCR反应最佳温度约为950℃;当CO浓度增加到1000 ppm时,SNCR反应最佳温度约为850℃;当CO浓度达到5000 ppm时,SNCR反应最佳温度只有750℃。该现象也在我国水泥生产企业得到证实。! U: N: M& q0 A6 p# H- f
# Y! L6 U5 x) l8 U5 a, N, u- s7 w
环保之家2.JPG 9 m0 T. u( F8 S
$ G* p0 X4 k$ O% G8 G8 ]

* }" d8 i) o0 F+ h* t" H0 o$ sCO浓度对SNCR反应效率的影响* e2 J, ~$ e/ B# D) n7 V4 k2 M
5 x1 U9 ]3 j% ~- p# j( L8 {& Q* f
(初始NOx=500ppm,还原剂为氨水,NSR=1.5)
$ c3 ^$ v' O. P% Y; V5 c! D' x7 z" d5 s' `2 j- x( Q5 M
(2)CO浓度会降低SNCR脱硝效率
, Q. f# Y8 }. y% y6 O) C; F. q, B& }/ {$ {9 g4 O$ ~9 f1 X
诸多研究表明,NH3与NOx反应之前,必须先生成NH2;触发NH3生成NH2的反应有多个,其中最重要的是NH3与OH的反应。OH来源于燃烧后的烟气,其同时也是CO氧化的反应物。由此,NH3和CO形成了对OH的竞争关系,如下所示。
* `/ {9 S& E. L6 [
/ ?. o  }% y2 b4 f- ^& U2 XNH3+OH→NH2+H2O                    (4)   ( ^8 ]) ]- O, d$ E. n

4 ~8 U9 I1 x( g! `8 WCO+OH→CO2+H                         (5)  
' @5 i+ G+ D- [0 T. p2 Z6 S% W/ q* j
/ n' [/ ~( A' ^& K0 v8 w: d9 O$ _) I简单来看,CO的存在会和NH3争夺OH,从而减少了NH2的生成,降低SNCR反应效率。但是,CO为什么又能降低SNCR反应温度窗口呢?这主要是由于上述反应产生的H会继续进行如下反应:
" k4 e$ `5 ?0 Y+ x: m. \
! V. L5 ^2 |" j5 P- r: ZH+O2→OH+O                             * T0 s0 M* O4 v% ~
1 R) G6 L$ F' O+ R; `
O+H2O→2OH                             
1 Q6 g% N0 K( v: d
( R+ T9 X$ i6 w, ]& M7 p# V当O2充足时,OH含量不仅没有因为反应(5)而减少,反而因为后续的链式反应而增加;除此,反应(5)是放热反应,有利于提高局部温度。OH含量的增加和反应(5)放出的热量,使得反应(4)在较低温度下得以较快进行,所以SNCR反应温度窗口降低。然而,OH含量的增加使得整体反应速率都加快,O含量也增加,O的增加促使更多NH2发生氧化反应生成NO,从而降低了SNCR脱硝效率,这也是建设SNCR系统时需要保证还原剂喷入位置CO浓度小于300  ppm的原因。除此,由于对OH的竞争关系,NH3的喷入会增加烟气中CO的含量。
  e& n1 o4 ]6 a, F; m
4 L3 F5 t2 P& }% ?9 p/ W德国Bauverlag公司对三条使用PREPOL-MSC的分解炉进行了SNCR脱硝实验。该分解炉具有分级燃烧特点,部分燃料直接喂入窑尾烟室,以削减窑内NOx;为了增强燃烧后烟气与氧气的混合,在三次风管上方安装有扰流室,以保证完全燃烧。实验时,将氨水分别喷入分解炉三个部分,即仍处于燃烧状态的还原区域(930-990℃)、三次风管与扰流室之间的氧化区域(890℃)、扰流室与末级预热器之间的氧化区域(850-870℃)。结果表明,喷入氨水的位置越远离燃烧区域,脱硝效率越高。
' Y/ p/ ~  D8 A) y
$ s" x; }* [# Y6 X(3)结论& ?# T8 E7 Z) s. o/ V

+ T: W! ^" V/ c5 B$ \0 o氨水喷枪移动到C5预热器出口后,部分企业氨水用量明显减少,部分企业变化不明显,这除了与反应时间有关外,更多取决于分解炉内CO的浓度。如果分解炉CO浓度并不高,将喷枪移到C5预热器出口,SNCR脱硝效率会因为C5出口温度较低而下降;如果分解炉CO浓度较高,将喷枪移到C5预热器出口具有以下优势,一方面避免分解炉喷入位置CO含量较高而导致实际温度超过SNCR温度窗口,另一方面移动到C5出口后,CO浓度有所降低,这有利于SNCR脱硝反应的进行。来源:水泥,2018年第2期。" ?* {" |( m- f* _, M+ @

; w9 s" T0 ]2 @

© 声明:本文仅表作者或发布者个人观点,与环保之家[2TECH.CN]无关。其原创性及陈述文字、内容、数据及图片均未经证实,对本文及其全部或部分内容、图片、文字的真实性、完整性、及时性本站不作任何保证或承诺,仅做参考并自行核实。如有侵权,请联系我们处理,在此深表歉意。

举报 使用道具 回复

您需要登录后才可以回帖 登录 | 中文注册

本版积分规则

更多

客服中心

2121-416-824 周一至周五10:30-16:30
快速回复 返回顶部 返回列表
现在加入我们,拥有环保之家一站式通行证!马上 中文注册 账号登陆