选择性非催化还原反应(SNCR)是目前我国水泥生产企业广泛采用的脱硝技术。通过将氨水、尿素等还原剂以一定速度喷入分解炉中合适的温度窗口,将烟气中的NOx还原为N2,从而降低NOx排放量。尽管几乎所有水泥生产线NOx排放浓度都能达到国家标准要求,但还原剂用量差别非常大,如国内5000t/d熟料生产线氨水用量从200-300 L/h到1800-2000 L/h不等。还原剂用量不一、出口NOx浓度差异大,这除了与窑炉燃烧产生的初始NOx水平有关外,还与SNCR自身脱硝效率有更大关系。本文针对水泥窑炉SNCR反应机制进行探讨,以求降低还原剂用量,实现SNCR的优化运行。
3 N/ a' L. ~7 t; E0 {) c- H. C- l1 o1 z7 Y* a, |% l" ?, R
, O; @ f4 Q) S! x( n1. 还原剂与烟气中NOx的混合效果! Z. e; I/ x2 ^/ \8 }
- ^% K) g; A# Q. L对于任何气相化学反应,反应物之间混合情况直接影响反应速率。沃托兰廷、伯利休斯等研究表明,在还原剂喷入位置等条件相同时,水泥生产线规模越大,SNCR脱硝效率越低;原因在于规模越小的生产线设备尺寸越小,喷入的还原剂与烟气中NOx混合情况较好,脱硝效率较高,反之,脱硝效率较低。对于规模一定的生产线,还原剂与NOx的混合问题主要表现在以下两方面。
; R5 Z" \; a% u5 B& O
, }3 ?( k+ J# V- ^& O5 Z" Y8 C% t第一,喷入的氨水无法及时到达分解炉中心,只能与分解炉周边烟气中的NOx发生反应。本文作者曾利用CFD对某5000t/d生产线分解炉内燃烧与分解反应进行模拟,在此基础上对还原剂喷入分解炉后的颗粒轨迹进行计算分析,结果如图1所示,其中颜色越深表明颗粒运动时间越长。
6 U6 g# w0 D" c+ |$ O$ _$ A' x2 o7 M1 I5 ~( }5 X2 E, C r! N
$ e( Q0 H8 `7 c& y# B. _) f
/ S0 S* y |$ d0 I+ Q0 M4 O
图1 还原剂喷入分解炉后的运动轨迹
0 L7 v; U5 y. [& n" }/ w. K) z
, Q( E" W* R* Y! U如图1所示,虽然还原剂以20m/s的速度喷入分解炉,但迅速被炉内大量烟气带走,无法及时与分解炉中部大量烟气接触,导致分解炉边部还原剂浓度过高,而中部还原剂浓度过低,大大降低了SNCR脱硝效率。上述现象在水泥生产企业得到证实,如有些企业氨水喷枪损坏后,喷入的氨水雾化效果变差,但由于之前喷入的氨水与烟气中NOx混合情况就比较差(如图1所示),喷枪雾化效果变差并没有引起氨水用量的显著增加;另外,增加喷枪数量理论可以获得还原剂与烟气更好的混合效果,但实际应用表明增加喷枪并没有明显降低还原剂用量。与此同时,有些企业通过将位于分解炉出口的喷枪转移到C5预热器出口,由于此处烟气中NOx分布均匀且截面积较小,从而提高了SNCR脱硝效率。
7 D1 ]* G) @+ n+ P( ]5 A: d6 [& b6 Z& O% L. @8 ^
第二,同一截面不同还原剂喷枪喷入位置的NOx分布不均。由于分解炉内具有喷腾、旋流等效应,导致分解炉烟气存在一定程度的分层现象,同一截面不同位置NOx浓度差异较大。应用CFD对某5000t/d生产线还原剂喷入位置的NOx浓度进行计算,结果如图2所示。4 {: a, t/ ?9 B/ _5 o
$ K2 L7 u$ F; y5 b/ \# v) p/ M/ H6 ?" l
9 ^* {5 Y: _1 k- Z# I
/ z. q3 x/ R F2 Q! \" B图2还原剂喷入位置截面NOx体积浓度分数(%)及截面均分方法
9 D: ]# P6 F1 U* i8 E) v- e3 f* G. U* D- s8 I
由图2可知,NOx在同一截面的分布存在显著差异。将该截面均匀分为四等分,分别记为左前、左后、右前、右后,如图2所示。截面每部分NOx浓度平均值如表1所示。
7 O$ v0 n$ u/ l6 D E
) j, Q4 D3 {, B5 ?1 M表1 还原剂喷入位置截面不同部位NOx浓度平均值
. t( }0 Y( W! G4 q5 v) Q, [! I4 b- ?$ t7 a& x
由表1可知,左后部分NO平均浓度最大,右前部分NO平均浓度最小,两者差别达到近170 ppm。我们对某5000t/d生产线分解炉(TDF)在还原剂喷入位置(鹅颈管出口)的实际测试表明,同一高度不同位置NOx浓度差超过了200 ppm。由于目前所有喷枪的还原剂喷入量一般相同,这使得NOx浓度较高的区域氨氮摩尔比(NSR)较低,而NOx浓度较低的区域NSR较高,从而降低了SNCR的脱硝效率。% J& `5 Z2 L% E$ i/ r6 H6 L
7 m/ g0 u9 l L' ?5 S(1)CO会影响SNCR脱硝反应温度7 z* E# `1 y9 c* U: J* H( C
9 E; L% z4 f7 V
9 X1 s4 M; R) o9 c1 U; E ^+ X/ U
CO的存在显著降低了SNCR反应温度窗口,且CO浓度越高,SNCR反应温度窗口越低。当CO浓度为100 ppm时,SNCR反应最佳温度约为950℃;当CO浓度增加到1000 ppm时,SNCR反应最佳温度约为850℃;当CO浓度达到5000 ppm时,SNCR反应最佳温度只有750℃。该现象也在我国水泥生产企业得到证实。
$ |( Q1 W& b/ ~
# h! N# ?4 u. |) c$ E/ P1 y
4 v; ?1 O; W% p; _& `8 f
( u5 y7 q3 o% r/ j6 e+ N1 T8 l& P; w3 B' k8 d% B
CO浓度对SNCR反应效率的影响
8 A1 \$ s( [, b/ n% K- r
8 H4 K. @+ n0 {(初始NOx=500ppm,还原剂为氨水,NSR=1.5)4 H5 X3 H. H0 m3 }+ N* o# H( x
/ a2 S j0 q0 a; h D(2)CO浓度会降低SNCR脱硝效率- F8 j% o- e/ N+ h
8 w2 G$ X1 q/ u- c, }1 q
诸多研究表明,NH3与NOx反应之前,必须先生成NH2;触发NH3生成NH2的反应有多个,其中最重要的是NH3与OH的反应。OH来源于燃烧后的烟气,其同时也是CO氧化的反应物。由此,NH3和CO形成了对OH的竞争关系,如下所示。# ]6 {+ a8 ]( M; m r$ X
& C; K. `: |) LNH3+OH→NH2+H2O (4) % U4 a8 z' Y) \
/ }, |% V O1 _4 K0 B
CO+OH→CO2+H (5) 2 B0 ~& Y( S( g9 f# H6 A8 i: B9 Y6 x8 [
' y+ a: E0 b9 U5 }6 e
简单来看,CO的存在会和NH3争夺OH,从而减少了NH2的生成,降低SNCR反应效率。但是,CO为什么又能降低SNCR反应温度窗口呢?这主要是由于上述反应产生的H会继续进行如下反应:
5 p( |- A9 e1 n Q$ I! @% x8 S- h2 C# f( d L1 i) J- w1 n+ K% T* V( N1 L
H+O2→OH+O
8 `/ z& u3 d( A. f3 X. G
3 y- O) ]8 q4 I6 g) U7 rO+H2O→2OH
* x5 i7 J4 m# \9 u
# U1 `/ `8 u) ~/ R3 A当O2充足时,OH含量不仅没有因为反应(5)而减少,反而因为后续的链式反应而增加;除此,反应(5)是放热反应,有利于提高局部温度。OH含量的增加和反应(5)放出的热量,使得反应(4)在较低温度下得以较快进行,所以SNCR反应温度窗口降低。然而,OH含量的增加使得整体反应速率都加快,O含量也增加,O的增加促使更多NH2发生氧化反应生成NO,从而降低了SNCR脱硝效率,这也是建设SNCR系统时需要保证还原剂喷入位置CO浓度小于300 ppm的原因。除此,由于对OH的竞争关系,NH3的喷入会增加烟气中CO的含量。
3 ~; l9 E, V! t0 D: M+ ]
8 p# w. T8 |7 ?, y德国Bauverlag公司对三条使用PREPOL-MSC的分解炉进行了SNCR脱硝实验。该分解炉具有分级燃烧特点,部分燃料直接喂入窑尾烟室,以削减窑内NOx;为了增强燃烧后烟气与氧气的混合,在三次风管上方安装有扰流室,以保证完全燃烧。实验时,将氨水分别喷入分解炉三个部分,即仍处于燃烧状态的还原区域(930-990℃)、三次风管与扰流室之间的氧化区域(890℃)、扰流室与末级预热器之间的氧化区域(850-870℃)。结果表明,喷入氨水的位置越远离燃烧区域,脱硝效率越高。7 r3 u# ^$ ^7 Q
G, a! C! L% u6 n3 ~4 _: w9 k. O
(3)结论
9 F& l, r# h0 X9 z$ i! _' A- n$ J6 T
氨水喷枪移动到C5预热器出口后,部分企业氨水用量明显减少,部分企业变化不明显,这除了与反应时间有关外,更多取决于分解炉内CO的浓度。如果分解炉CO浓度并不高,将喷枪移到C5预热器出口,SNCR脱硝效率会因为C5出口温度较低而下降;如果分解炉CO浓度较高,将喷枪移到C5预热器出口具有以下优势,一方面避免分解炉喷入位置CO含量较高而导致实际温度超过SNCR温度窗口,另一方面移动到C5出口后,CO浓度有所降低,这有利于SNCR脱硝反应的进行。来源:水泥,2018年第2期。( x* ]$ o) i" B2 i
, z6 f% Y3 k" D# Z
|
© 声明:本文仅表作者或发布者个人观点,与环保之家[2TECH.CN]无关。其原创性及陈述文字、内容、数据及图片均未经证实,对本文及其全部或部分内容、图片、文字的真实性、完整性、及时性本站不作任何保证或承诺,仅做参考并自行核实。如有侵权,请联系我们处理,在此深表歉意。
|