脱硫脱硝 解析:水泥窑炉SNCR脱硝反应机制及运行 [复制链接]

2228 0
京东
选择性非催化还原反应(SNCR)是目前我国水泥生产企业广泛采用的脱硝技术。通过将氨水、尿素等还原剂以一定速度喷入分解炉中合适的温度窗口,将烟气中的NOx还原为N2,从而降低NOx排放量。尽管几乎所有水泥生产线NOx排放浓度都能达到国家标准要求,但还原剂用量差别非常大,如国内5000t/d熟料生产线氨水用量从200-300 L/h到1800-2000 L/h不等。还原剂用量不一、出口NOx浓度差异大,这除了与窑炉燃烧产生的初始NOx水平有关外,还与SNCR自身脱硝效率有更大关系。本文针对水泥窑炉SNCR反应机制进行探讨,以求降低还原剂用量,实现SNCR的优化运行。8 z2 x5 {, u; r0 s: z. \! ?
5 {6 p- [: l* b! y

) j. s+ H  P# r. d: [1. 还原剂与烟气中NOx的混合效果; j8 U" S! ^. `2 X2 U
. ]) ?5 J# p# x8 V" E' f1 W
对于任何气相化学反应,反应物之间混合情况直接影响反应速率。沃托兰廷、伯利休斯等研究表明,在还原剂喷入位置等条件相同时,水泥生产线规模越大,SNCR脱硝效率越低;原因在于规模越小的生产线设备尺寸越小,喷入的还原剂与烟气中NOx混合情况较好,脱硝效率较高,反之,脱硝效率较低。对于规模一定的生产线,还原剂与NOx的混合问题主要表现在以下两方面。
! q% N. G! J; t4 z- V
" Z' s9 r! @- A' \3 L/ \1 ]第一,喷入的氨水无法及时到达分解炉中心,只能与分解炉周边烟气中的NOx发生反应。本文作者曾利用CFD对某5000t/d生产线分解炉内燃烧与分解反应进行模拟,在此基础上对还原剂喷入分解炉后的颗粒轨迹进行计算分析,结果如图1所示,其中颜色越深表明颗粒运动时间越长。) m6 R% W4 @9 J/ Y/ o$ P6 [5 i
1 W6 P1 [% `1 O" q4 F! [) H/ _
环保之家.JPG 7 F/ J1 ?( p! l, n. s
3 Z. j' p/ i4 `3 v" [7 f
图1 还原剂喷入分解炉后的运动轨迹
2 B2 w+ i+ g; R/ g: k8 E( {( {
/ ?3 N- L1 Q1 o- l如图1所示,虽然还原剂以20m/s的速度喷入分解炉,但迅速被炉内大量烟气带走,无法及时与分解炉中部大量烟气接触,导致分解炉边部还原剂浓度过高,而中部还原剂浓度过低,大大降低了SNCR脱硝效率。上述现象在水泥生产企业得到证实,如有些企业氨水喷枪损坏后,喷入的氨水雾化效果变差,但由于之前喷入的氨水与烟气中NOx混合情况就比较差(如图1所示),喷枪雾化效果变差并没有引起氨水用量的显著增加;另外,增加喷枪数量理论可以获得还原剂与烟气更好的混合效果,但实际应用表明增加喷枪并没有明显降低还原剂用量。与此同时,有些企业通过将位于分解炉出口的喷枪转移到C5预热器出口,由于此处烟气中NOx分布均匀且截面积较小,从而提高了SNCR脱硝效率。
2 z  `' q; I% }* j4 `' b
+ v4 H( L8 H: `) z第二,同一截面不同还原剂喷枪喷入位置的NOx分布不均。由于分解炉内具有喷腾、旋流等效应,导致分解炉烟气存在一定程度的分层现象,同一截面不同位置NOx浓度差异较大。应用CFD对某5000t/d生产线还原剂喷入位置的NOx浓度进行计算,结果如图2所示。* ?% g& \8 c: H, e& _* L: w) E5 O

$ S6 C0 A3 g: w 环保之家1.JPG
& p# c6 Z8 {0 ~0 A" ]# @' J  U! k& p: O2 |
图2还原剂喷入位置截面NOx体积浓度分数(%)及截面均分方法
6 ]$ L/ |& T2 e' H$ M+ n: e& k+ x6 {& ^% @4 Y
由图2可知,NOx在同一截面的分布存在显著差异。将该截面均匀分为四等分,分别记为左前、左后、右前、右后,如图2所示。截面每部分NOx浓度平均值如表1所示。
, G+ N$ e$ b% d* y+ S8 O) C- F& J% m/ B9 ~7 J: G0 ~7 X& a
表1 还原剂喷入位置截面不同部位NOx浓度平均值
. t5 g; i0 w) m2 I7 X5 e! I4 E0 z
位置
左前
左后
右前
右后
NOx浓度/ppm
906
968
801
950
9 ^/ e# G% j* M# ^# L& K; {  \  ?+ v
8 M* p3 J2 ?7 r: ^! G9 G
由表1可知,左后部分NO平均浓度最大,右前部分NO平均浓度最小,两者差别达到近170 ppm。我们对某5000t/d生产线分解炉(TDF)在还原剂喷入位置(鹅颈管出口)的实际测试表明,同一高度不同位置NOx浓度差超过了200 ppm。由于目前所有喷枪的还原剂喷入量一般相同,这使得NOx浓度较高的区域氨氮摩尔比(NSR)较低,而NOx浓度较低的区域NSR较高,从而降低了SNCR的脱硝效率。
1 ^, }+ x: _) M) G3 ?
+ n) m% h& j% Q2 `: V/ ?7 M% h  B(1)CO会影响SNCR脱硝反应温度( s5 o  @3 q4 K8 h
3 ^2 `3 [( v: _

" P% \! C& h. P5 L7 T/ Q8 yCO的存在显著降低了SNCR反应温度窗口,且CO浓度越高,SNCR反应温度窗口越低。当CO浓度为100 ppm时,SNCR反应最佳温度约为950℃;当CO浓度增加到1000 ppm时,SNCR反应最佳温度约为850℃;当CO浓度达到5000 ppm时,SNCR反应最佳温度只有750℃。该现象也在我国水泥生产企业得到证实。  Z0 S) X* N8 W* L4 C5 Q% F
8 C7 ^  s6 ~" A7 A
环保之家2.JPG
! l$ p1 {) F8 X& O9 \; h: `8 Y+ L$ M. ~& ?* f
1 I# g2 ?0 t, v; ?: E
CO浓度对SNCR反应效率的影响2 C. W7 G. Y  @

* d! g! @2 K/ z8 M5 `(初始NOx=500ppm,还原剂为氨水,NSR=1.5)9 M* g/ h5 ?7 X7 }+ K9 W( c! \

9 d9 t; k. t) A' O(2)CO浓度会降低SNCR脱硝效率) M$ O2 v) _& H  `! G: T

, n, Z2 `( f1 o诸多研究表明,NH3与NOx反应之前,必须先生成NH2;触发NH3生成NH2的反应有多个,其中最重要的是NH3与OH的反应。OH来源于燃烧后的烟气,其同时也是CO氧化的反应物。由此,NH3和CO形成了对OH的竞争关系,如下所示。  K  C/ D% W5 l* V- e$ @1 x3 M
% ~$ g& e) i' W% R
NH3+OH→NH2+H2O                    (4)   $ S2 `8 F/ r2 \) W/ l

( P! e* p% Y) j. qCO+OH→CO2+H                         (5)  
/ e& |' S8 c, U8 ]- @. `0 b+ O% q2 ]
简单来看,CO的存在会和NH3争夺OH,从而减少了NH2的生成,降低SNCR反应效率。但是,CO为什么又能降低SNCR反应温度窗口呢?这主要是由于上述反应产生的H会继续进行如下反应:
# j9 G5 R* }" Y; C7 I3 D/ K" w9 F
$ c8 K# W( F3 M7 kH+O2→OH+O                             
5 V) I. H" i  ?1 r! m8 Z! N' H6 T7 s' X+ P. U2 }" s* T
O+H2O→2OH                             7 B% ?# k! L0 Y7 E

) e- p  |' y0 b$ U" U3 t! u当O2充足时,OH含量不仅没有因为反应(5)而减少,反而因为后续的链式反应而增加;除此,反应(5)是放热反应,有利于提高局部温度。OH含量的增加和反应(5)放出的热量,使得反应(4)在较低温度下得以较快进行,所以SNCR反应温度窗口降低。然而,OH含量的增加使得整体反应速率都加快,O含量也增加,O的增加促使更多NH2发生氧化反应生成NO,从而降低了SNCR脱硝效率,这也是建设SNCR系统时需要保证还原剂喷入位置CO浓度小于300  ppm的原因。除此,由于对OH的竞争关系,NH3的喷入会增加烟气中CO的含量。9 |( [2 z+ u" d3 ~- V( m9 G
: }7 a3 K5 I* p' {: H) J( {
德国Bauverlag公司对三条使用PREPOL-MSC的分解炉进行了SNCR脱硝实验。该分解炉具有分级燃烧特点,部分燃料直接喂入窑尾烟室,以削减窑内NOx;为了增强燃烧后烟气与氧气的混合,在三次风管上方安装有扰流室,以保证完全燃烧。实验时,将氨水分别喷入分解炉三个部分,即仍处于燃烧状态的还原区域(930-990℃)、三次风管与扰流室之间的氧化区域(890℃)、扰流室与末级预热器之间的氧化区域(850-870℃)。结果表明,喷入氨水的位置越远离燃烧区域,脱硝效率越高。* l  ]& k' ]4 Q3 I" I" {) d. k4 w

3 w. A% L2 @  p) V3 Z% ?4 q& w(3)结论) Z8 _+ M) i/ b! p! H1 d' y$ }
' J' F0 y' z# e" h9 w" O
氨水喷枪移动到C5预热器出口后,部分企业氨水用量明显减少,部分企业变化不明显,这除了与反应时间有关外,更多取决于分解炉内CO的浓度。如果分解炉CO浓度并不高,将喷枪移到C5预热器出口,SNCR脱硝效率会因为C5出口温度较低而下降;如果分解炉CO浓度较高,将喷枪移到C5预热器出口具有以下优势,一方面避免分解炉喷入位置CO含量较高而导致实际温度超过SNCR温度窗口,另一方面移动到C5出口后,CO浓度有所降低,这有利于SNCR脱硝反应的进行。来源:水泥,2018年第2期。' u. W, m0 n; N) C: L

7 T) j3 R1 ?+ J7 X! Q4 f

© 声明:本文仅表作者或发布者个人观点,与环保之家[2TECH.CN]无关。其原创性及陈述文字、内容、数据及图片均未经证实,对本文及其全部或部分内容、图片、文字的真实性、完整性、及时性本站不作任何保证或承诺,仅做参考并自行核实。如有侵权,请联系我们处理,在此深表歉意。

举报 使用道具 回复

您需要登录后才可以回帖 登录 | 中文注册

本版积分规则

更多

客服中心

2121-416-824 周一至周五10:30-16:30
快速回复 返回顶部 返回列表
现在加入我们,拥有环保之家一站式通行证!马上 中文注册 账号登陆