组图打开中,请稍候......
查看数: 7391 | 评论数: 2 | 收藏 0
提示:支持键盘翻页<-左 右->
|
发布时间: 2021-4-15 07:28
正文摘要:
流域水环境质量恶化、湖库水体富营养化,城镇黑臭水体是当今世界范围内水环境质量改善面临的共同挑战,造成水质恶化的外源驱动性重要因素就是人类活动加剧了污染物尤其是氮、磷等物质由固相向液相的转移、释放过程。 ...
-
给水排水 发表于
2021-4-15 07:33:47
4.4厂-网联调联控技术(RTC)应对峰值流量8 ]' E; {% {+ j; w: s7 k( S) q7 v
7 N* m. U: E' I应对城市雨季峰值流量,仅靠灰色基础设施(调蓄池等)不仅投资大,运行成本也不经济,同时要发挥硬件设施之间的协同联动性。如何发挥排水管网、排水设施与末端污水厂之间的联动,20世纪90年代开始,美国、德国、丹麦等国家在该领域进行了大量研究和实践,基于“管网-处理厂”系统集成化管控角度,采用实时控制(Real Time Control, 简称RTC)技术进行“厂-网”联调联控,充分通过“硬件-软件”组合提高或发挥“厂-池-站-网”的匹配性,可以有效提高系统空间容量和处理能力的使用率,在同等条件下减少合流制溢流污染和内涝风险、提高污水处理率,实践证明了RTC技术对提高城市排水系统弹性的优势,在不增加现有主要设施的基础上,可实现对CSO溢流量减少23%~100%的目标。为更好地规范和指导RTC项目的实施,德国水协会于2005年发布的《排水管网实时控制规划框架》中包括了排水管网实时控制项目规划的步骤、可行性评估的要求和关键环节的具体要求等内容。美国环保署于2006年发布了《城市排水管网的实时控制》,提出要依据采集的现场监测数据,动态调整设施设备的开关状态和运行参数,以达到晴天(提高污水处理率)和雨天(减少CSO和内涝)的运行目标。不同城市水系统厂-网实时控制案例见表3。
% I, x; F# j( z2 c" Z" h& E& U/ ~3 X/ _+ l
表3 部分城市水系统厂-网实时控制溢流效果及频次2 M* c9 M7 K' P4 q
, V4 o3 _8 B* R' I8 [2 x | | | | | 降雨强度逐年增加,强降雨下内涝和合流制溢流问题严重 | | 35% 溢流频次削减,少于10次/a; 40% 污水厂溢流量削减; 减少中心城区调蓄池规模 | | | | 本地RTC,1%~46% 溢流量削减; 全局RTC,2%~100% 溢流量削减 | | | 泵站,堰,溢流管改造 + W( p" t4 ^# i0 J5 S/ a2 R. M4 j
| 14.1% 溢流量削减; 10.4% 溢流负荷削减; 一定程度上减少内涝 | | | | | | 合流制溢流及其带来的负荷问题严重,溢流频繁,污水厂峰值过高 | | CSO泵运行时间缩短; 溢流频次降低; 污水厂高位平稳运行; 40% 溢流量削减潜力 | | 合流制溢流问题严重,有内涝问题,现有设施的利用率不高 | | |
) a' {# B+ L4 i% R; F, b实施RTC策略主要是解决“厂-池-站-网”的匹配性问题,使得排水系统中各组成要素如管网、泵站、调蓄池和污水厂等在系统目标约束条件(溢流频次和溢流总量等)下实现雨污水收集、转输、调蓄和处理能力的相互匹配,实际上这也是我国近些年大规模沿河截污后面临的共性问题,“源头-中途-末端”没有实现能力的有效协同,快速化的工程实施又进一步加剧了各要素之间的不匹配性。目前,我国很多城市“厂-池-站-网”的匹配性存在很大问题,严重制约了水环境质量改善,具体主要体现在:①存量设施在线存储能力雨季没有充分释放和发挥;②降雨期间上游径流量无有效管控下对下游形成冲击负荷,缺乏中途径流分担机制;③上游排水系统收集能力与污水厂处理能力不匹配;④多种原因导致的调蓄池、泵站作为“承上启下”节点,面临上游管网收集和下游管网输送能力不匹配的瓶颈制约。因此,成功实施RTC策略,重要的前期基础性工作就是进行排水系统要素匹配性分析,发现、识别系统的瓶颈并定量评估,制定改造方案以提高系统的匹配性,在对瓶颈的识别分析基础上提出改造方案,统筹制定、调整RTC调度规则。
: a9 k: h% ^3 E# a( i. [2 u) Z( y& u5 e0 s: c( i
+ w+ z0 V7 o( }' p1 }
3 Y& k- [. c6 q3 q2 H" b目前我国尚未在法律、法规方面出台对雨季峰值流量进行处理的要求和规定,美国在联邦法规、EPA历年出台的CSO控制策略中对污水厂雨季峰值流量的处理均有明确定义和约定原则,且随着水环境质量提升和管理实践的不断丰富,美国EPA也在与利益相关方协调试图不断更新上述规则,为了鼓励污水厂雨季多处理峰值流量,美国1989年就出台了CSO控制策略,USEPA 1994出台的CSO控制政策中明确提出了“Nine minimum control”,即“九项基本控制措施”,提出要发挥污水厂存量设施的最大化处理能力,对雨季超量混合污水或峰值流量进行处理,要求对合流制管网雨季收集到的85%的流量进行处理,这样相当于控制CSO溢流频次4~6次/a;对超量混合污水厂可采用“附加处理”措施。需要说明的是,一些用于雨季超量雨污混合流量处理的高效物-化处理工艺如EHRT,投资更省,作为集约型“非生物处理的二级处理”工艺,其出水可以获得同样的“二级处理”效果,出水在与生化处理出水进行“掺混”最终经过消毒后排放,这是有利于合流制系统减少CSO对环境的污染。值得进一步指出的是,在分流制污水系统(SSO),这种“掺混”的做法在美国持续多年存在争议,美国EPA对CSO同意“掺混”解决雨季峰值流量问题, 但对SSO并没有明确法律政策。2013年美国联邦第八巡回上诉法院裁定,SSO使用非生物处理工艺处理峰值流量与经过生物处理的流量进行掺混并且达到排放标准是合法的,但该裁决只适用于第八巡回法院管辖范围内的7个州。美国在污水厂峰值流量处理政策方面已经有了数十年的积淀,虽然各州政策和做法不尽相同,但是都是鼓励对雨季峰值流量进行必要处理。因此,我国亟需出台这方面的法律法规,真正确立支撑“网-厂-河”模式的法律法规基础,从立法角度提倡和鼓励市政污水厂在雨季发挥设施最大能力对超额流量进行处理,最大程度削减CSO和向环境排放的污染物。
0 f: i2 J7 K" l! H! P' k C/ p l. k1 k# s
其次,在排放标准层面,目前我国的排放标准、取样约定及考核方式不利于雨季峰值流量的处理。欧美发达国家一般是基于流域TMDL理念下的排放许可证制度,采用周均值、月均值进行考核,而我国采用日均值考核,实际执法时往往采取瞬时值或实时在线仪表监测值。由于进水条件等多种原因导致的对生物处理工艺的干扰并引起出水波动性,为了稳定达标运行单位不得不采取更加保守的运行模式对污水厂进水流量和工艺参数进行严格调控,日均值考核模式实际上大大提高了污水厂建设投资及运行成本,这种考核方式在技术层面和运营层面都制约了污水厂雨季进行峰值流量处理。尤其是雨季峰值流量处理设施往往是物理-化学强化一级处理,即便采用部分活性污泥工艺处理峰值流量出水也会存在短时不稳定现象,按《城镇污水处理厂污染物排放标准》(GB18918—2002)一级A考核或者近些年出台地标考核,会存在达标风险。因此,为激励污水厂对峰值流量进行处理,除了政策法规支撑外,执行层面建议可以借鉴欧美国家,在排放标准上要调整目前的日均值考核方式,可采用周均值和月均值水质达标考核方式;或者各地因地制宜单独制定针对峰值流量的排放标准和指导性处理技术路线,如昆明《城镇污水处理厂主要水污染物排放限值》征求意见稿中,明确雨天污水厂处理量超过设计处理规模1.1倍时,超量溢流污水经一级强化处理,设置单独排放口,但超量污水处理并不对NH3-N、TN进行要求,出水执行E级排放标准,BOD5为30mg/L,COD为70mg/L, TP为2mg/L。针对合流制雨季超量混合污水制定单独排放标准和审批单独排放口,这样有利于鼓励污水厂多处理峰值流量,降低溢流排放量,促进水环境质量的持续改善,真正实现流域治理理念下的“网-厂-河-湖”综合治理体系。
+ a/ M4 O3 D' d" ?: B$ @8 U, E# ~3 B/ V- a, o8 O2 T
|
|