雾都重庆 发表于 2021-4-6 09:17:20

水泥窑协同处置之问题与措施

一、问题回顾


既然是完结篇,首先在此对之前的一些重要结论进行回顾:

水泥窑处置固体废弃物通常由分解炉加入,部分随烟气向上运动,部分直接掉入烟室。对于随烟气运动的废弃物,燃尽率是关键;对于掉入烟室的废弃物,重点在于减少掉入烟室的废弃物数量。
关于燃尽率:

废弃物所含热量真正能发挥最用的(对节煤有贡献的)比例仅为35%,当废弃物燃尽率更低时,这个比例更小,甚至为负,即要“倒贴”煤。

当废弃物燃尽率较低时,分解炉出口CO含量明显升高,升高了C1出口温度,并增加了化学热损失,通常1000ppm的CO多带走4kcal/kgcl热量。

影响废弃物燃尽率的关键是废弃物处置量、含水率、尺寸大小及反应时间。其中,“仅”考虑分解炉的话,废弃物停留时间仅数秒;降低废弃物的含水率、尺寸大小通常经济上不可行。因此,废弃物处置量的关键还是在于延长反应时间。

关于掉入烟室:

当废弃物直接喂入分解炉时,对于直径≤8mm的废弃物,基本不会落入烟室;对于直径≥10mm的废弃物,将会落入烟室。
掉入烟室的废弃物不仅会影响熟料质量,其引起的局部还原气氛还会导致大量的硫释放,加剧硫的循环和富集现象,影响窑稳定运行,进而影响到窑产量和废弃物处置量。

二、解决问题

如何解决这两个棘手的问题呢?

答案就是:采用外部燃烧装备。

在不改变分解炉本身的情况下,将废弃物喂入外部燃烧装备中,出外部燃烧装备的废弃物及其烟气再进入分解炉内燃烧,其优势在于:

(1)废弃物在外部燃烧装备中提前燃烧,尤其是那种具有很长停留时间(数十分钟)的外部燃烧装备(分解炉内停留时间仅数秒),从而显著提升废弃物的燃尽率,解决燃尽率这一难题。

(2)废弃物经过在外部燃烧装备内的加热、水分蒸发、挥发分析出、裂解等化学反应过程,小尺寸的废弃物直接燃尽;大尺寸的废弃物经过数十分钟的燃烧过程,尺寸也会逐步变小。当其再喂入分解炉之后,也会大大减少掉入烟室的数量,减少对窑运转的影响。

三、产品介绍

市场上有很多适用于水泥窑协同处置废弃物的外部燃烧装备,在此重点介绍一个产品:史密斯公司的热盘炉(Hotdisc)。

热盘炉如下图所示,三次风从右上角接入热盘炉,废弃物从热盘炉炉顶靠近三次风管位置喂入;热盘炉本身是一个旋转的炉面,通过调节旋转速度,废弃物在炉面上的停留时间最长可以达到45分钟;为了保持热盘炉内的温度,设有喷煤点和C4生料喂入点;经过数十分钟的停留时间后,燃尽后的废弃物残渣和烟气进入上升烟道。




从介绍中可以看出,热盘炉符合上面提到的外部燃烧装备的两个优势:①停留时间,保证废弃物燃尽率;②废弃物落在炉面上燃烧,经过裂解等过程,废弃物或燃尽,或尺寸显著缩小,减少掉入烟室的比例。

实际运行也证明了,与直接处置废弃物相比,采用热盘炉后:

生产系统运行稳定性明显提升(得益于落入烟室的废弃物量显著减少)

废弃物处置量增加一倍至两倍(对于5000t/d生产线,生活垃圾日处置量≥500t/d,危废≥200t/d)

处置废弃物所带来的节煤效果更加突出,以前单位熟料节煤少甚至“倒贴”煤的,采用热盘炉后吨熟料实物煤耗明显降低(如某企业采用热盘炉处置生活垃圾,吨熟料实物煤耗节约了5-10 kg,取决于废弃物处置量和热值等)(得益于废弃物的燃尽率显著提升)

余热发电量明显提升(得益于废弃物处置量增大,单位熟料烟气量更大,C1出口烟气温度也更高,但由于废弃物自身燃尽率高,吨熟料实物煤耗还降低了)

目前,热盘炉在国内外已投产30余台套,系统运行稳定、操作简单、运维费用很低,而且对窑产量及质量几乎无影响。

页: [1]
查看完整版本: 水泥窑协同处置之问题与措施