混凝澄清常用设施及调运
混合设备混合设备的作用是,使药剂迅速、均匀地分散到水流中,并形成的带电粒子并与原水中的胶体颗粒及其它悬浮颗粒充分接触,形成许多微小的絮凝物(又称小矾花)。
为了增加颗粒间的碰撞,通常要求水处于湍流状态,并在2min以内形成絮凝物。为使水流产生湍流可利用水力或机械设备来完成。混合设备的作用是让药剂迅速、均匀地扩散到水流中,使之形成的带电粒子并与原水中的胶体颗粒及其它悬浮颗粒充分接触,形成许多微小的絮凝物(又称小矾花)。
为了增加颗粒间的碰撞,通常要求水处于湍流状态,并在2min以内形成絮凝物。为使水流产生湍流可利用水力或机械设备来完成。采用水力混合设备时,通常使用产生的水头控制搅拌强度,一般为0.4~1.0m。采用机械设备时,是按输入水流中的功率控制搅拌强度,一般按速度梯度为700~1000s-1(单位)计算确定。
混合设备种类很多,分管道混合,水泵混合,水力混合和机械混合等,其中管道混合,水泵混合常用于直流凝聚。
直流凝聚是在过滤设备之前投加混凝剂,原水和混凝剂经混合设备充分混合后直接进入过滤设备,经过滤层的接触混凝作用就能较彻底地去除悬浮物。直流凝聚处理通常用于低浊水的处理。
1.1 管道式混合
管道式混合是将配制好的药液直接加到混凝沉降设备或絮凝池的管道中。因为它具有不需另设混合设备和布置简单等优点,所以应用较多。
为使药剂能与水迅速混合,加药管应伸入水管中部,伸入距离一般为水管直径的1/3~1/4。另外,为了混合均匀,通常规定管道式混合投药点至水管末端出口的距离不小于50倍的水管直径,而且管道内的水速宜维持在1.5~2.0m/s,加药后水在沿途水头损失不应小于0.3~0.4m,否则应在管道上装设节流孔板。
1.2 水泵式混合
水泵式混合是一种机械混合,它是将药剂加至水泵吸水管中或吸水喇叭口处,利用水泵叶轮高速旋转产生的局部涡流,使水和药剂快速混合,它不仅混合效果好,而且不需另外的机械设备,也是目前经常采用的一种混合方式。
管道式混合与水泵式混合都常用于靠近沉降澄清设备的场合,如果距离太长,容易在管道内形成絮凝物,导致在管道内沉积而堵塞管路。
1.3 涡流式混合
涡流式混合主要原理是将药剂加至水流的漩涡区,利用激烈旋转的水流达到药剂与水的均匀快速混合。
水力式混合
水力式混合形式很多,在早期的水处理中曾采用过水跃(不容易懂)合和跌水混合,它们都是将药剂加至水流的漩涡区,利用激烈旋转的水流达到快速混合。
近些年来,人们研究了各种型式的“静态混合器”,并得到广泛的应用。这种混合装置呈管状,接在进水的管路上。
管内按设计要求装设若干个固定混合单元,每一个单元由2~3块挡板按一定角度交叉组合而成,形式多种多样,如图给出了一种单元的示意结构。当水流通过这些混合单元时被多次分割和转向,达到快速混合的目的。它有结构简单、安装方便等优点。
1.4 机械混合
机械混合是利用电动机驱动螺旋器或浆板进行强烈混合,通常在10s~30s以内完成。一般认为螺旋器的效果比浆板好,因为浆板容易使整个水流随浆板一起转动,混和效果较差。
混凝澄清池形式
2.1 机械搅拌澄清池
机械搅拌澄清池是一种泥渣循环型澄清池,池体由第一反应室、第二反应室和分离室三部分组成,见图。
这种澄清池的工作特点是利用机械搅拌叶轮的提升作用来完成泥渣的回流和接触絮凝。
原水由进水管进入环形三角配水槽内混合均匀,然后由槽底配水孔流入第一反应室,在此与分离室回流泥渣混合,混合后的水再经叶轮提升至第二反应室继续反应以形成较大的絮粒,第二反应室设有导流板,以消除因叶轮提升作用所造成的水流旋转,使水流平稳地经导流室流入分离室沉降分离,分离区的上部为清水区,清水向上流入集水槽和出水管。
分离室的下部为悬浮泥渣层,少部分排入泥渣浓缩器,浓缩至一定浓度后排出池外。混凝剂一般加在进水管中,絮凝剂加在第一反应室。
1—进水管;2—环形进水槽; 3—第一反应室; 4—第二反应室; 5—导流室; 6—分离室;7—集水槽;8—泥渣浓缩室;9—加药管;10—搅拌叶轮; 11—导流板;12—伞形板
2.2 水力循环澄清池
2.2.1 澄清池机理及工艺过程
水力循环澄清池也是一种泥渣循环型澄清池,其基本原理和结构与机械搅拌澄清池相似,只是泥渣循环的动力不是采用专用的搅拌机,而是靠进水本身的动能,所以它的池内没有转动部件。
由于它结构简单,运行管理方便、成本低,适宜处理水量为50~400m3/h,进水悬浮物含量小于2000mg/L,高度上很适宜与无阀滤池相配套,因此在火电厂水处理中应用较多。
水力循环加速澄清池主要由进水混合室(喷嘴、喉管)、第一反应室、第二反应室、分离室、排泥系统、出水系统等部分组成,见图1-4。原水由池底进入,经喷嘴高速喷入喉管内,此时在喉管下部喇叭口处造成一个负压区,高速水流将数倍于进水量的泥渣吸入混合室。
水、混凝剂和回流的泥渣在混合室和喉管内快速、充分混合与反应。混合后的水的流程与机械加速澄清池相似,即由第一反应室→第二反应室→分离室→集水系统。从分离室沉下来的泥渣大部分回流再循环,少部分泥渣进入泥渣浓缩室浓缩后排出池外。
喷嘴是水力循环澄清池的关键部件,它关系到泥渣回流量的大小。泥渣回流量除与原水浊度、泥渣浓度有关外,还与进水压力、喷嘴内水的流速、喉管的管径等因素有关。运行中可调节喷嘴与喉管下部喇叭口的间距来调整回流量。调节的方法为:①利用池顶的升降机构使喉管和第一反应室一起上升或下降,②在检修期间更换喷嘴。
1—混合室;2—喷嘴; 3—喉管; 4—第一反应室; 5—第二反应室; 6—分离室;7—环形集水槽;8—穿孔集水管;9—污泥斗;10—伞形罩; 11—进水管;12—排泥管
2.2.2 澄清池的运行管理
a.运行前的准备工作
检查池内设备的空池运行情况。
进行原水的烧杯试验,取得最佳混凝剂和最佳投药量。
b.启动运行
尽快达到所需泥渣浓度:使进水量为设计出水量的1/2~2/3,适当加大投药量(约正常计量的1~2倍),减小第一反应室的提升水量。
在泥渣形成过程中,逐步提高泥渣回流量。
在形成泥渣过程中,应定期取样测定池内各部位的泥渣沉降比,若第一反应室和池底部泥渣沉降比逐步提高(此句不通!),则表明泥渣层在2~3h后即可形成,可逐步减少加药量。若发现泥渣比较松散、絮凝体较小或原水水温和浊度较低,可适当向池内投加粘土促使泥渣层尽快形成。
当泥渣层形成后,出水浊度应达到设计要求:将加药量减至正常值,然后逐渐加大进水量,每次增加水量不超过额定水量的20%,间隔不得低于1h。
当泥渣面达到规定高度时,应进行排泥,使泥渣层高度稳定。为使泥渣保持最佳活性,一般控制第二反应室泥渣沉降比在5min内控制10%~20%。
c.正常运行
澄清池应保持稳定的加药量和合格的出水质量,应每隔2~4h记录一次进水流量、压力,测定一次进、出水浊度,pH值及各部位泥渣沉降比。
澄清池的负荷应稳定,不宜大幅度波动。
进入澄清池的水应无空气,以避免由于空气的扰动而影响澄清池的出水质量。
当澄清池需要提高(或降低)负荷运行时,每次增加水量不超过额定水量的20%,间隔不得低于0.5h
澄清排泥一般每天排放1~2次,排泥时间不宜过长,以免活性泥渣排出太多,影响澄清池的正常运行。
当澄清池停运8~24h重新启动时,因泥渣处于压实状态,所以应先从底部排出少量泥渣,并控制较大的进水量和加药量,使底部泥渣松动、活化后,然后调整出力至设计值2/3左右运行,待出水水质稳定后,再逐渐降低加药量,加大进水负荷至正常进水量运行。
d.运行中的故障处理
当清水区出现细小絮凝体、出水水质浑浊、第一反应室絮凝体细小、反应室泥渣浓度变小时,都可能是由于加药量不足或原水浊度太低造成的,应随时调整加药量或投加助凝剂。
当分离室泥渣层逐渐上升、出水水质变坏、反应室泥渣浓度增高、泥渣沉降比达到25%以上、或泥渣斗的沉降比超过80%以上时,都可能是由于排泥量不足,应缩短排泥周期,加大排泥量。
清水区出现絮凝体明显上升,甚至出现翻池现象,可能有以下几种原因:日光强烈照晒,造成池水对流;进水量超过设计值或配水不均匀造成偏流;投药中断或排泥不适;进水温度突然上升。应需要根据不同原因进行调整。
2.3 气浮澄清池
2.3.1 气浮澄清池机理及工艺过程
气浮澄清池的运行原理是以微小气泡作为载体,粘附水中的杂质颗粒,使其视密度小于水,然后颗粒被气泡携带浮升至水面并与水分离去除的方法。
常用的气浮澄清池采用的是部分回流加压溶气气浮法,设备结构紧凑,将接触室和分离室设计为一个整体水流衔接更为合理,设计回流比控制在20~30%之间。其附属设施包括气浮反应罐、压力溶气罐和溶气水泵。
气浮工艺过程是在气浮澄清池反应罐前加入混凝剂,在混凝剂的作用下水中的胶体和悬浮物脱稳形成细小的矾花颗粒;水流进入气浮池接触室后矾花颗粒与溶气水中大量的微细气泡发生吸附,形成密度小于水的絮体并且上浮,在水面形成浮渣层;清水则由气浮澄清池下部汇集进入出水槽。
在出水槽内设置水位调节管,调节气浮澄清池内水位,方便刮渣。气浮澄清池顶安装1台旋转式刮渣机,池底部设有接触室、分离室排污管,如图1-5。
1—接触室;2—分离室; 3—进水管; 4—溶气释放器; 5—集水装置; 6—集水斗;7—出水装置;8—排渣槽;9—刮泥机;10—电机及减速机; 11—接触室、分离室排污管
2.3.2 气浮澄清池的运行管理
a.设备的正常运行
电气柜送电,混凝反应搅拌机、气浮刮渣机运行正常;
开启溶气水泵、压力溶气罐进水阀、空气罐进气阀,待空气罐压力达到设定压力时,缓开溶气罐进气阀,使气、水同时进入溶气罐。
调节进水阀,控制压力溶气罐内的水位距罐底60~100cm(既不能淹没填料,也不能过低)。
全开溶气罐出水阀,防止出水阀门因截流气泡提前释出,并从接触室观察溶气水的释气情况和效果。
待溶气和释气系统完全正常后,开启气浮混凝反应罐出口阀;
开启混凝剂加药计量泵,调整好加药量;
开启气浮反应罐混凝反应搅拌机进行试运;
通过池面观察气浮池带气絮粒的上浮情况及浮渣的积厚情况,如发现接触室浮渣面不平,局部冒出大气泡或水流不稳定,很可能是由于释放器被堵,应取下释放器排除堵塞;
如发现分离区浮渣面不平,池面常见大气泡破裂,则表明气泡与絮粒粘附不好,应验查压力溶气罐和释放器,并对混凝系统进行调整;应验查(什么?)并对混凝系统进行调整;
待水位稳定后,用进水阀门调节至设计流量为止;
待浮渣积至8-10cm厚时,启动刮渣机进行刮渣。观察刮渣和排渣能否正常进行,出水水质是否受到影响;
运行过程中,定时检查水泵、空压机温升和轴承温度,发现异常,立即停车检查。
b.刮渣步骤
关闭气浮池出口电动阀,将气浮池水位抬高到刮渣水位;
按下刮渣机启动开关,启动刮渣机;
当刮渣机刮板转过两到三圈回到刮渣槽内,停刮渣机。
c.溶气释放器冲洗步骤
在运行过程中,有时会出现释放器被堵的情况,可以采取以下的冲洗措施:
使空气罐压力达到设定值时(高于0.3MPa);
打开冲洗进气阀门,此时溶气罐进出水阀都应处于开启状态;
15秒钟后关闭反冲进气阀门;
打开放气阀门,放净反冲管路中的高压空气。
页:
[1]