深度:厌氧UASB反应器主要设施设计[1]
反应器的池体有两种基本几何形状的UASB反应器:即矩形和圆形。这两种类型的反应器都已大量应用于实际中。
圆形反应器具有结构较稳定的优点,同时对于圆形反应器在同样的面积下,其周长比正方形的少12%。所以圆形池子的建造费用比具有相同面积的矩形反应器至少要低12%。但是圆形反应器的这一优点仅仅在采用单个池子时才成立,所以,单个或小的反应器可以建造成圆形的。
而大的反应器经常建成矩形的或方形的。当建立两个或两个以上反应器时,矩形反应器可以采用共用壁。当建造多个矩形反应器时有其优越性。对于采用公共壁的矩形反应器,池型的长宽比对造价也有较大的影响。对于大型UASB反应器建造多个池子的系统是有益的,这可以增加处理系统的适应能力。如果有多个反应池的系统,则可能关闭一个进行维护和修理,而其他单元的反应器继续运行。
混凝土结构的UASB反应器是最为常见的结构和材料型式,但是采用标准化和系列化的设计必须考虑结构的通用性和简单性,在此基础上形成的系列化设计才能有生命力和推广的价值。
(1)平面布置池体的标准化主要是根据三相分离器的尺寸进行布置的,目前生产的三相分离器的平面尺寸是2m×5m。根据这一形式布置池体有以下几种方式(图2-3、2-4和2-5)。图2-3中(a)为整个池表面均采用三相分离器的形式,而(b)是池顶的一部分采用池体本身结构构成气室;这样可以节省一部分三相分离器的投资。整个池子分成单池单个分离器、双池每池单个分离器和单池两个分离器的形式,很明显如果需要也可以构成双池每池两组分离器的形式。由于三相分离器的尺寸的原因,所以池子的宽度是以5m为模数,长度方向是以2m为模数。原则上如果采用管道或渠道布水,池子的长度是不受限制。如前所述出于反应器的长宽比的范围涉及到建筑物的经济性,所以在上述范围内选择要结合池子组数考虑适当的长宽比。
由于反应器的高度推荐范围为4~6m,表2-1给出了5m高的反应器的尺寸选择的系列。从原则上讲安排2m×5m的三相分离器的平面布置还可以有其他多种的平面配合形式如,宽度可以以2m为模数,而长度以10m为模数。构成4m×5m,4m×10m,6m×5m,6m×10m,6m×15m……的系列。甚至可以采用三相分离器横竖混合布置的形式。但是考虑通用性和简单性的原则,推荐表2-1的组合方式。
(2)设备固定形式三相分离器设备固定的形式可以采用牛腿和工字钢支撑的两种形式(图2-6)。需要说明的是由于运行过程中,三相分离器的气室内有一定量的沼气,所以会形成比较大的浮力,需要考虑上部的固定措施,固定措施可以借助出水管和出气管,以及其他形式。池底同样可以采用两种不同的形式(图2-7).其中对于典型的UASB反应器推荐采用因2-7(b)的形式,因为这种结构可以避免布水不均匀形成的死区问题:同时可以减少布水管的投资,但是会增加一定的土建投资。图2-8是采用混凝土反应器的工程图示意,从图见到的是一种可整体安装的三相分离器设计形式。
三相分离器的设计
通过对不同大小三相分离器的分析,可以发现三相分离器设计的关键是图2-16(b)和(c)圆圈中所示的平行四边形中的流速关系。要求选择合理的缝隙宽度(b)和斜面长度(或遮盖宽度),以防止UASB消化区中产生的气泡被上升的液流夹带入沉淀区,造成污泥流失。由图2-16(b)可见,当气泡随液流以速度v沿分离器缝隙上升时,它同时具有垂直向上的速度Vp。在由B点移至A点时,在垂直方向上向上移动距离AC,因此满足以下关系式:
水封高度计算水封高度是控制污泥床反应器小气室高度的参数。根据图2—16(c)反应器中气室的高度h2是由水封有效高度H来加以控制。H的计算值应为:
H=h2+h4-H2
式中:H——为水封后面可能产生的阻力。
分离器锥体的高度h4,一般与所采用的直径有关。h4值的选择应保证气室出气管畅通无阻,防止浮渣堵塞出气管。从实践来看,气室水面上总是有一层浮渣,浮渣的厚度与水质有关,例如,含难消化短纤维较多的污水,浮渣就较多。因此在选择h4时,应当留有浮渣层的高度。此外还需有排放浮渣的出口。当h4选定后再根据流程的实际情况确定H2,此时水封的有效高度H就能确定。
从原则上讲中试装置所采用的UASB反应器和相应的三相分离器与实验室装置没有本质的差别。但是,生产性装置需要考虑三相分离器的型式和一些水力学的问题,以及一些工程放大和安装等问题。
页:
[1]